Những câu hỏi liên quan
NN
Xem chi tiết
LD
29 tháng 4 2020 lúc 8:28

Mình làm mẫu cho bạn câu a) nhé 

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2 

152 = AB2 + AC2

AB : AC = 3:4

=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)

\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)

\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)

Ý b) tương tự nhé 

Bình luận (1)
 Khách vãng lai đã xóa
VK
Xem chi tiết
CC
13 tháng 9 2016 lúc 20:33

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

Bình luận (0)
VD
Xem chi tiết
HP
12 tháng 2 2016 lúc 10:10

Xét tg ABC vuông tại A

BC^2=AB^2+AC^2(đl Pytago)

AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144

theo t/c dãy tỉ số=nhau ta có:

AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)

=>AB^2=25.4=100=10^2=>AB=10(cm)

AC^2=144.4=576=24^2=>AC=24(cm)

 Vậy...

Bình luận (0)
H24
10 tháng 2 2018 lúc 12:49

Xét tg ABC vuông tại A
BC^2=AB^2+AC^2(đl Pytago)
AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số=nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
 Vậy...

:D

Bình luận (0)
LS
Xem chi tiết
DG
Xem chi tiết
NT
5 tháng 2 2022 lúc 15:56

a: AB=8cm

b: xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

Bình luận (1)
LQ
Xem chi tiết
DH
4 tháng 3 2017 lúc 13:11

Tam giác ABC vuông tại A  => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)

\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :

\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)

\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)

\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)

Vậy AB = 10 (cm); AC = 24 (cm)

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 3 2021 lúc 22:11

a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Vậy: BC=8cm

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 3 2022 lúc 16:49

Ta có 

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{100}{25}=4\Rightarrow AB=6;AC=8\)cm

Mặt khác \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.BC.AH\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}\)

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 1 2022 lúc 19:24

Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{9+16}=\dfrac{BC^2}{25}=\dfrac{100}{25}=4\Rightarrow AB=6cm;AC=8cm\)

Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức AH^2 = AB . AC 

=> AH^2 = 48 => AH = 4\(\sqrt{3}\)cm

Bình luận (0)
OP
25 tháng 1 2022 lúc 19:24

AC=8cm

AB=6cm

ta có: AH.BC=AC.AB

        AH.10=8.6

        AH=4,8cm

Bình luận (3)