Những câu hỏi liên quan
NK
Xem chi tiết
NM
16 tháng 11 2021 lúc 15:40

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

Bình luận (0)
H24
16 tháng 11 2021 lúc 15:41

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Bình luận (0)
LN
Xem chi tiết
LL
2 tháng 10 2021 lúc 15:03

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Bình luận (0)
NP
Xem chi tiết
NP
Xem chi tiết
HV
18 tháng 12 2018 lúc 16:36

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

Bình luận (0)
NP
Xem chi tiết
H24
18 tháng 12 2018 lúc 19:38

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

Bình luận (0)
NP
18 tháng 12 2018 lúc 20:20

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

Bình luận (0)
WK
Xem chi tiết
H24
11 tháng 2 2017 lúc 8:33

Mình biết hơi muộn

\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)

\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)

\(\Rightarrow-1\le x+y+3\le1\) .

\(\Rightarrow2012\le x+y+3+2013\le2014\)

\(\Rightarrow2012\le B\le2014\)

Bình luận (0)
AG
Xem chi tiết
NH
15 tháng 8 2016 lúc 20:36

Áp dụng BĐT |x|+|y|\(\ge\)|x+y| ta có:

|x-1|+|x-2017|\(\ge\) |x-1+x-2017|=|x-1+2017-x|=2016

Dấu ''='' xảy ra \(\Leftrightarrow\) (x-1)(2017-x)\(\ge\)0Lập bảng xét dấu ta có

x                                           1                                          2017
x-1                       -                0                +                                       +
2017-x                  +                                 +                           0           -
(x-1)(2017-x)          -              0                   +                         0            -

Do đó \(1\le x\le2017\)

Bình luận (0)
AG
15 tháng 8 2016 lúc 20:56

Btd là j bạn

Bình luận (0)
PC
Xem chi tiết
LV
23 tháng 1 2017 lúc 20:24

Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016

=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y

nên A min=2016 khi y=4;x=-5

Bình luận (0)
PC
2 tháng 2 2017 lúc 11:49

hay thanks

Bình luận (0)
PC
10 tháng 2 2017 lúc 12:29

Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy

Bình luận (0)
DN
Xem chi tiết
DN
19 tháng 2 2018 lúc 16:53

Ai giúp với

Bình luận (0)