Câu 3. (1,0 điểm) Cho tam giác ABC ( A = 60° ,AC<AB) nội tiếp đường tròn (O; R) Hai đường cao BH và CK cắt nhau tại I.
a/ Chứng minh tứ giác AHIK là tứ giác nội tiếp
b/Tính diện tích hình quạt giới hạn bởi hai bán kính OB, OC và cung nhỏ BC theo R
Câu 2: cho tam giác abc vuông ở a có góc b = 60 độ . kẻ tpg góc b cắt ac tại d
a. tính góc adb và góc bdc
b. so sánh các cạnh của tam giác abd
c . so sánh các cạnh của tam giác bdc
Câu 3 : 1, cho tam giác abc trên tia đối của tia ac lấy điểm d sao cho ad=ac . kẻ de và cf cùng vuông góc với đường thẳng ab ở e và f
a. cm a là trung điểm của ef
b. chứng minh de song song cf
c. chứng minh df song song ce
Bài 3:
a: Xét ΔAFC vuôngtại F và ΔAED vuông tại E có
AC=AD
góc FAC=góc EAD
=>ΔAFC=ΔAED
=>AF=AE
=>A là trung điểm cua EF
b: DE vuông góc AB
CF vuông góc AB
=>DE//CF
c: Xét tứ giác CFDE có
CF//DE
CF=DE
=>CFDE là hình bình hành
=>CE//DF
Câu 1 :Cho tam giác ABC có góc B-góc C =40 độ Đường trung trực của BC cắt AC ở I Tính số đo góc ABI
Câu 2 :Tam giác ABC có AB=6 BC=4 Qua trung điểm M của AC kẻ đường thẳng vuông góc với AC cắt A tại I Tính chu vi tam giác IBC Câu 3 :Cho góc xOy = 60 độ điểm A nằm trong góc đó Vẽ các điểm B và C sao cho Ox là đường trung trực của AB. Oy là đường trung trực của AC Tính các góc của tam giác OBC
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
1) Cho tam giác ABC không vuông có BC= 3 cộng căn 3, góc C=60 độ, góc B=45 độ.Tính chiều cao AH và chu vi tam giác ABC.
2) Cho tam giác ABC không vuông có góc A=105 độ, góc B=45 độ,BC=4cm.TÍnh AB,AC
3) Cho tam giác ABC có góc A=60 độ, AB=28cm,AC=35cm.Kẻ Bh vuông góc với AC. Tính BH,BC.
giải giúp mình vs, 1 câu cx đc (^_^)
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)
Câu 3 (1,0 điểm) Cho tam giác ABC có đường cao AH, góc C< góc B < 90* , M là điểm nằm giữa H và B; N là điểm thuộc đường thẳng BC nhưng không thuộc đoạn BC.Chứng minh:
a) AB + HB < AC + HC
b) AM < AB < AN
Cho tam giác ABC, Trên BC lấy điểm M sao cho MB = 1/3 BC. Trên AC lấy điểm N là trung điểm. Biết diện tích tam giác AMN bằng 60 cm2. Tính:
a) Diện tích tam giác AMC
b) Diện tích tam giác ABC
a) SAMN=1/2 SAMC ( Vì có đáy AN=1/2 AC và có chung chiều cao hạ từ đỉnh M xuống AC)
=> SAMC = 60x2=120(cm2)
b)SAMN =2/3 SABC ( Vì có đáy MC=2/3 BC và có chung chiều cao hạ từ đỉnh A xuống BC)
=>SABC=120:2x3=180(cm2)
Đáp số: a) 120 cm2
b) 180 cm2
Cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) CMR : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
Các bạn cố làm giúp mình câu d nhé, 3 câu trên mình sẽ tự làm!
Cho tam giác ABC vuông tại A, đường cao AH. AB=3, BC=6.
A, giải tam giác ABC(mk lm r)
(AC=3√3; ^ABC= 60; ^BCA= 30) mk cần câu b c/m qua cùng vg góc để có song song và câu c
B, gọi E, F lần lượt là hình chiếu của H trên AB, AC. GỌI I, J lần lượt là trung điểm của BH, HB. c/m EIJF là hình thang vuông.
C, tính diện tích EIJF.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN