Những câu hỏi liên quan
H24
Xem chi tiết
SS
26 tháng 11 2015 lúc 21:26

xét dãy số sau:

2003;20032003;..;20032003(có n số 2003; n >2004)

nhậnxét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004

=> số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;...;2003 dảy trên có nhiều hơn 2003 số nên theo nguyên lì dirichle => có ít nhất 2 số chia cho 2004 có cùng mợt số dư

=> số có dạng 20032003...2003...2003(có 2003+m số 2003) và số 2003..2033(có m số 2003) có cùng số dư

=> hiệu của chúng chia hết cho 2004

hay số 2003200300..00(có 2003 số 2003) chia hết chi 2004

NHỚ TICK**

Bình luận (0)
ND
Xem chi tiết
SX
3 tháng 6 2016 lúc 7:52

- xét dãy số gom  2002 số hạng sau :

2003, 2003.... 2003 , 2003 ... 2003

2002 lan 2003 

chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]

có 2002 phép chia nên theo nguyên tắc dirichlet  phải có ít nhất 2 số có cùng số dư khi chia 2002

giả sử 2 số đó là am và an [m,n N];  1< = m

voi am = 2003 2003... 2003; an = 2003 2003 ... 2003

ta có :[an- am] chia het cho 2002

hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002

vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002

k mk nha

Bình luận (0)
NB
Xem chi tiết
NT
10 tháng 4 2016 lúc 23:08

Khi chia một số cho 2002 có tất cả 2002 số dư từ 0 đến 2001;

Xét dãy gồm 2003 số: 2003; 20032003; 200320032003, ...;200320032003...(gồm 2003 số 2003). khi chia các số trong dãy trên cho 2002 thì theo N.L Dirichle có ít nhất hai số chia cho 2002 có cùng số dư, nên hiệu của chúng chia hết cho 2002. Gọi hai số đó là 20032003...2003(gồm m số 2003) và 20032003...2003(gồm n số 2003), giả sử m<n, ta có:

20032003...2003(gồm n số 2003) - 20032003...2003(gồm m số 2003) Chia hết cho 2002

hay 20032003...200300...0(gồm n-m số 2003 và m số 0) chia hết cho 2002. Vậy, tốn tại số có dạng 20032003...200300...0 chia hết cho 2002

Bình luận (0)
DA
Xem chi tiết
DD
25 tháng 3 2015 lúc 22:32

đề hình như thiếu có bao nhiêu số 2003

Bình luận (0)
H24
15 tháng 1 2017 lúc 22:04

bạn ơi muốn thế thì phải có 1991 số 2003 nha

Bình luận (0)
LD
Xem chi tiết
H24
Xem chi tiết
SL
31 tháng 3 2016 lúc 19:53

A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.

Bình luận (0)
OO
31 tháng 3 2016 lúc 19:55

bài 1:

A = (2004 x 2004 x x 2004) x 2004 = C x 2004 ( có 2002 thừa số 2004)

C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 ( vì 6 x 4 = 24)

B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) =( 2003 x 2003 x 2003 x 2003) x x (2003 x 2003 x 2003 x 2003 ). vì 2004 : 4 = 501 (nhóm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). vậy tận cùng của A + B là 4 + 1 = 5. do đó A + B chia hết cho 5 

Bình luận (0)
LV
Xem chi tiết
NH
21 tháng 10 2015 lúc 19:22

vì 2001^ 2003 có số tận cùng là :1

2003^ 2004 có số tận cùng là : 3

vậy không chia hết cho 2

 

Bình luận (0)
LT
Xem chi tiết
NT
26 tháng 10 2021 lúc 19:58

a: \(=5^{2003}\left(5^2-5+1\right)\)

\(=5^{2003}\cdot21⋮7\)

Bình luận (0)
ND
Xem chi tiết
ND
29 tháng 12 2017 lúc 12:25

egetf2yhhjeebhjdyheyegb

ee53eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Bình luận (0)
NH
29 tháng 12 2017 lúc 12:29

S=<2003^1+2003^2+2003^3+2003^4+......+2003^10>

S+1=<2003.[1+2+3+...+10]>

S=2004.55

suy ra S:2004=55

vậy S chia hết cho 2004

Bình luận (0)
TH
29 tháng 12 2017 lúc 12:30

Xét dãy số sau :

2003;20032003;....;20032003;...0(2003 số 2003(có n số 2003 chia hết cho2004

Nhận xét:Các số trong dãy đều là số lẻ nên không chia hết cho 2004

=>Số bất kỳ trong dãy chia cho 2004 đều dư 1;2;3;...;2003

Dãy số trên có  nhiều hơn 2003 số nên theo Nguyên lí Dirichlê =>Có ít nhất 2 số chia cho 2004 có cùng số dư 

=>Số có dạng 20032003....2003...2003(có 2003 +m số 2003) và số 2003...2003(có m số 2003)có cùng số dư

=>Hiệu của chúng chí hết cho 2004

Hay số 2003...20032003...200300...00(có 2003 số 2003)chia hết cho 2004

Bình luận (0)