cho biet a> b,chứng tỏ rằng 2019 -a < 2020 -b .
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho biết rằng a>b chứng tỏ rằng 2019-a<2020-b
ho biết rằng a>b chứng tỏ rằng 2019-a<2020-b
Cho \(A=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\). Chứng tỏ A ko phải là 1 số nguyên.
Mk cần gấp. Mai nộp rồi!!!
sao ko có ai giúp mk vậy
Chứng tỏ rằng ko tồn tại các số nguyên a,b,c thỏa mãn a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=2019^2020
cho a = 1 - 2019 /2020 + ( 2019/2020)^2 -(2019-2020)^3 +....+(2019/2020) ^2020 chứng tỏ a ko phải là một số nguyên
Ta có:
\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)
=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)
Lấy
\(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)
<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)
Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)
=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)
và \(0< \frac{2020}{4039}< 1\)
=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)
=> 0 < a < 1
=> a không phải là một số nguyên.
toan lop may vay ban ?
a) Tìm số tự nhiên n biết:
\(\dfrac{4}{3\cdot5}+\dfrac{8}{5\cdot9}+\dfrac{12}{9\cdot15}+....+\dfrac{32}{n\cdot\left(n+16\right)}=\dfrac{16}{25}\)
b) Chứng tỏ rằng:
\(\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2018}>4\)
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
b) Sai đề nha
\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)
\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)
chị ơi hình như chị nhầm rồi P/s cuối phải là 1/n.(n+6)thì phải
Cho A = \(\dfrac{2019}{2020}\)+\(\dfrac{2020}{2021}\)+\(\dfrac{2021}{2022}\)+\(\dfrac{2022}{2019}\). Chứng tỏ A > 4
Giúp với ạ!!
Ta có:2019>4
=>2019/2020+2020/2021+2021/2022+2019>4
=>a>4(dpcm)
Cho \(A=2+2^{2}+2^{3}+2^{4}+...+2^{2019}+2^{2020}.\)Chứng tỏ rằng \(A⋮3\).
Mình đang cần gấp,mai mình phải nộp!
A=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2019}+2^{2020}\right)\\ 2^2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2019}\left(1+2\right)\\ 3\left(2^2+2^3+...+2^{2019}\right)\)
=> A \(⋮\) 3
Cho biết a < b, chứng tỏ rằng: -5a - 2019 > -5b - 2019.
\(a<b\\\to -5a>-5b\\\to -5a-2019>-5b-2019\)