Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho biết rằng a>b chứng tỏ rằng 2019-a<2020-b
cho biet a> b,chứng tỏ rằng 2019 -a < 2020 -b .
Cho biết a < b, chứng tỏ rằng: -5a - 2019 > -5b - 2019.
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
Chứng minh rằng: \(2019^{2020}-2019^{2019}\) chia hết cho 4038
Nhờ mọi người giải giúp mình với
Bài 1: cho a+b=c+d và a^3+b^3=c^3+d^3 chứng minh rằng a^2019+b^2019=c^2019+d^2019
Bài 2: chứng minh rằng nếu a^3+b^3+c^3 = (a+b+c)^3 thì a^2013+b^2013+c^2013 = (a+b+c)^2013
Tìm x,y biết x^2018+y^2018=x^2019+y^2019=x^2020+y^2020.
Cho a+b+c=2019, 1/a + 1/b+1/c=1/2019. Tính 1/a^2019+1/b^2019+1/c^2019
Tìm x,y biết x^2-xy=6x-5y-8.
Giúp mk với, mk vã lắm rồi :-( :-(
a ) cho a/b = c/d cm a-b/a=c-d/c
b ) cho a+2019/a-2019 = b + 2020 /b-2020 cm a/b = 2019/2020
Biết a^2+b^2+c^2=ab+bc+ca và a^2019+b^2019+c^2019=3^2020. Tìm a, b, c