cho so tu nhien n>3 . cmr neu 2^n = 10a+b thi tich ab chia het cho 6
1) chung minh rang: a) n.(n +8) .(n+13) chia het cho 3
b)neu 10a +b chia hetcho13 thi a +4b chia het cho 13 (voi a,bla cac so tu nhien)
bạn xét n=2k;2k+1;2k+2(k thuộc N) rồi tự khắc sẽ ra
1,Tu 1 dem 100 co nhieu chu so chia het cho 2 chi het cho 5
2, Chung to rang voi moi so tu nhien n thi tich (n+3) (n+6)chia het cho 2
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
Chung to rang moi so tu nhien n thi tich (n+3)(n+6) chia het cho 2
+ Nếu n lẻ => n+3 chẵn và n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn => n+3 lẻ và n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho2 với mọi n
nếu n là số lẻ thì n+3 chia hết cho 2=>tích đó chia hết cho 2
nếu n là số chẵn thì n+6 chia hết cho 2=> tích đó chia hết cho 2
Chung to rang voi moi so tu nhien n thi tich (n+3).(n+6) chia het cho 2
Xét 2 trường hợp:
* Nếu n là số lẻ thì:
n + 3 là số chẵn
n + 6 là số lẻ
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
* Nếu n là số chẵn thì:
n + 3 là số lẻ
n + 6 là số chẵn
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
Vậy với mọi ...........
Nhớ k cho mình nhé! Thank you!!!
1/Hãy tìm 10000000000 so tu nhien lien tiep deu la hop so
2/CMR: neu a chia het cho b va b chia het cho a thi a=b hoac a=-b (a,b thuoc N)
chung to rang voi moi so tu nhien n thi tich (n+3^6).(n+2^10) chia het cho 2
chung minh rang moi so tu nhien n thi tich (n+3)*(n+6) chia het cho 2
cmr tich n(n+3) chia het cho 2 voi moi so tu nhien n
(+) với n là số lẻ => n = 2k
Thay vào ta có
n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n
(+) n là số lẻ => n = 2k + 1
thay vào ta có :
n(n+3) = (2k+ 1 )(2k+ 1 + 3 ) = ( 2k+ 1)( 2k + 4 ) = 2 ( k + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n
VẬy n(n+3) luôn luôn chia hết cho 2
Ta có: n(n+3)=n(n+1+2)
=n(n+1)+2n
Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2
mà 2n cũng chia hết cho 2
=> n(n+3) chia hết cho 2 với mọi n tự nhiên
Nếu n là số chẵn thì n có dạng 2k
=>n(n+3)=2k(2k+3) chia hết cho 2(đúng với n chẵn)
Nếu n là số lẻ =>n=2k+1
=>n(n+3)=(2k+1)(2k+1+3)=(2k+1)(2k+4)=2(2k+1)(2k+1) chia hết cho 2(đúng vói n lẻ)
Vậy n(n+3) chia hết cho 2 với mọi n
Xet tich gom 11 thua so : A = (5a.2006.b)(6a.2005.b)(7a.2007.b)....(15a.1996.b) voi a>b ; a,b la cac so tu nhien. CMR neu A chia het cho 2011 thi A chia het cho 2011^11