Cho M = \(\frac{2}{n-1}\)(n khác 1)
Tìm tất cả các số nguyên n để M có giái trị là số nguyên
A = \(\frac{3}{n-1}\)(n khác 1) tìm tất cả các số nguyên n để tìm A có giá trị là số nguyên
giúp nha!!!!! :)
để A là giá trị nguyên thì 3 chia hét n-1
=> n-1 thuộc Ư(3)
n-1=1
n=1+1
n=2
tự tính tiếp nha
A =\(\frac{3}{n-1}\)
Suy ra n -1 thuộc Ư(3) và n - 1 thuộc Z
Ta có Ư(3) = ( -1;-3;1;3 )
Do đó
n - 1 = -1
n = -1 + 1
n = 0
n - 1 = -3
n = -3 + 1
n = -2
n - 1 =1
n = 1 + 1
n = 2
n - 1 = 3
n = 3 + 1
n = 4
Vậy n =0;-2;2;4
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
cho biểu thức A= 5/n-1; (nThuộc N và n khác 0)
Tìm điều kiện của n để A là phân số? Tìm tất cả các giá trị nguyên của n để A là số nguyên?
a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)
b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d
->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1
UCLN(n,n+1) = 1 thì phân số tối giản
Để A là phân số
=> n-1 khác 0
=> n khác 1
Để A là nguyên
=> 5 chia hết n-1
=> n-1 \(\in\) Ư(5)
=> Ư(5)={-1;1;-5;5}
Ta có:
n-1 | -1 | 1 | -5 | 5 |
n | 0 | 2 | -4 | 6 |
Bài 1 Cho A=1-7+13-19+25-31+....Biết A có 20 số hạng.Tính giá trị của biểu thức A
Bài 2 Cho biểu thức B=n+4 / n-3
a,Số nguyên n thỏa mãn điều gì để B là phân số?
b,Tìm tất cả các số nguyên dương n để B có giá trị là số nguyên
c,Tìm tất cả các số nguyên n để B có giá trị bé hơn 0
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115
Ta có biểu thức :
A=1-7+13-19+25-31+...+109-115
=(1-7)+(13-19)+(25-31)+...+(109-115) (có tất cả 10 cặp)
=(-6)+(-6)+(-6)+...+(-6)
=(-6).10=-60
Vậy giá trị của biểu thức A là -60.
Chúc bạn học tốt!
#Huyền#
Cho biểu thức \(A=\frac{2}{n-1}\left(n\in Z\right)\)
a,Số nguyên n phải có điều kiện gì để A là phân số?
b,Tìm tất cả các giá trị nguyên của n để A là số nguyên
Tìm tất cả số nguyên n để:
phân số\(\frac{n+1}{n-2}\)có giá trị là một số nguyên
Gọi \(A=\frac{n+1}{n-2}\)
Để \(A\inℤ\)thì : \(n+1⋮n-2\)
= \(\left(n-2\right)+3⋮\left(n-2\right)\)
=> \(3⋮\left(n-2\right)\)( vì \(\left(n-2\right)⋮\left(n-2\right)\))
=> \(n-2\in U\left(3\right)=\){-1; 1; -3; 3}
=> \(n\in\left\{1;3;-1;5\right\}\)
\(\frac{n+1}{n-2}\)\(=\)\(\frac{n-2+3}{n-2}\)\(=\)\(\frac{n-2}{n-2}\)\(+\)\(\frac{3}{n-2}\)\(=\)\(1\)\(+\)\(\frac{3}{n-2}\)
\(để\)\(\frac{n+1}{n-2}\)\(có\)\(giá\)\(trị\)\(nguyên\)\(thì\)\(\frac{3}{n-2}\)\(pk\)\(có\)\(giá\)\(trị\)\(nguyên\)\(=>\)\(3⋮n-2\)
\(=>n-2\inƯ\left(3\right)\)\(=>....\)
\(Từ\)\(ó\)\(tự\)\(suy\)\(ra...\)
Tìm tất cả các số nguyên n để
a) Phân số \(\frac{n+1}{n-2}\) có giá trị nguyên
b) Phân số là phân số tối giản
Cho b = n/n - 4 (n thuộc z )
a, Tìm số nguyên n để B là 1 phân số
b, Tìm tất cả các số nguyên n để B có giá trị nguyên
Lời giải:
a. Để $B$ là phân số thì $n-4\neq 0$
$\Rightarrow n\neq 4$
b. Với $n$ nguyên, để $B$ nguyên thì:
$n\vdots n-4$
$\Rightarrow (n-4)+4\vdots n-4$
$\Rightarrow 4\vdots n-4$
$\Rightarrow n-4\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow n\in \left\{5; 3; 6; 2; 8; 0\right\}$
Tìm tất cả các số nguyên n để n+1/ 2n-1 có giá trị là số nguyên
\(\frac{n+1}{2n-1}\inℤ\Rightarrow\frac{2\left(n+1\right)}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\inℤ\Leftrightarrow\frac{3}{2n-1}\inℤ\)
\(\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
Thử lại ta được \(n\in\left\{-1,0,1,2\right\}\)thỏa mãn.