Cho đa thức A (x) thỏa mãn Chứng minh rằng đa thức A(x) có ít nhất 2 nghiệm phân biệt.
Chứng minh rằng đa thức Q(x) có ít nhất ba nghiệm, biết: (x^2 - 9).Q(x) = (x-1).Q(x - 4)
help
+Với x=1 ta có: \(\left(1^2-9\right).Q\left(1\right)=\left(1-1\right).Q\left(1-4\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0.Q\left(-3\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0\)
\(\Leftrightarrow Q\left(1\right)=0\)
Vậy x=1 là 1 nghiệm của đa thức Q(x).
+Với x=3 ta có: \(\left(3^2-9\right).Q\left(3\right)=\left(3-1\right).Q\left(3-4\right)\)
\(\Leftrightarrow0.Q\left(3\right)=2.Q\left(-1\right)\)
\(\Leftrightarrow2.Q\left(-1\right)=0\)
\(\Leftrightarrow Q\left(-1\right)=0\)
Vậy x=-1 là 1 nghiệm của đa thức Q(x).
+Với x=-3 ta có: \([\left(-3\right)^2-9].Q\left(-3\right)=\left(-3-1\right).Q\left(-3-4\right)\)
\(\Leftrightarrow0.Q\left(-3\right)=-4.Q\left(-7\right)\)
\(\Leftrightarrow-4.Q\left(-7\right)=0\)
\(\Leftrightarrow Q\left(-7\right)=0\)
Vậy x=-7 là 1 nghiệm của đa thức Q(x).
Suy ra: đa thức Q(x) có ít nhất 3 nghiệm.(đpcm)
Cho đa thức f(x) thoả mãn: x.f(x + 1) = (x + 2).f(x).
CTR đa thức f(x) có ít nhất 2 nghiệm là 0 và -1
Nếu x = 0
=> 0. f(1) = 2. f(0)
=> 0 = 2 . f(0)
=> f(0) = 0
=> x = 0
=> x = 0 là 1 nghiệm của đa thức f(x) ( 1 )
Nếu x = - 2
=> ( -2 ). f(- 1) = 0. f(- 2)
=> (-2 ). f(- 1 ) = 0
=> f(- 1) = 0
=> x = -1
=> x = -1 là 1 nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1
Biết rằng (x2 - 4) P( x + 1) = (x2 - 3) P(x)
Chứng minh rằng đa thức P(x) có ít nhất bốn nghiệm
giup mk vs m.n
Cho đa thức f(x=-2+x^4+2x^2+3x^3+4x^4+5x^4+3x^3+3
Chứng minh rằng đa thức f(x) không có nghiệm tại mọi giá trị của x
cho đa thức f(x)=ax^2+bx+c. Chứng minh rằng nếu a+b+c=0 thì x=1 là một nghiệm của đa thức f(x)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
CMR: đa thức f(x) có ít nhất 2 nghiệm biết x. f( x+1)=(x+3). f(x)
*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm
đúng cái nha
a). Khi nào số a được gọi là nghiệm của đa thức P(x).
b). Cho P(x) = x4 + 2x2 + 1, chứng tỏ rằng P(x) không có nghiệm.
c). Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = ½ và y= -1
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
a)
Số a được gọi là nghiệm của đa thức P(x) khi có P(a) = 0
b)$x^4 + 2x^2 + 1 = 0$$⇔ (x^2 + 1)^2 = 0$$⇔ x^2 = -1$(vô nghiệm do $x^2 ≥ 0$ với mọi x)Vậy P(x) không có nghiệmc)\(S = x^2y^2.(16y^3 - 2x) = (-1.\dfrac{1}{2})^2.(16.(-1)^3-2.\dfrac{1}{2})=\dfrac{-17}{4}\)chứng tỏ rằng đa thức x^2+6x+10 không có nghiệm
\(x^2+6x+10=x^2+3x+3x+9+1\)
\(=\left(x^2+3x\right)+\left(3x+9\right)+1\)
\(=x\left(x+3\right)+3\left(x+3\right)+1\)
\(=\left(x+3\right)^2+1\)
mà\(\left(x+3\right)^2\ge0\)
suy ra \(\left(x+3\right)^2+1\ge1>0\)
do đó \(x^2+6x+10>0\)
vậy đa thức trên không có nghiệm
cho đa thức f(x)= ax^2+bx+c. chứng minh rằng nếu x=1 và x= -1 là nghiệm của đa thức f(x) thì a và c là hai số đối nhau