Chứng minh: 1/4+1/9+1/16+...+1/529<22/23
Lưu ý: Ví dụ:1/4=1 phần 4
Ai biết làm bài này giúp mik với ạ
Chứng minh : \(\dfrac{9}{22}\) < \(\dfrac{1}{4}\) + \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+...\(\dfrac{1}{100}\)<\(\dfrac{9}{10}\)
Cho A=1/4+1/9+1/16+...+1/18+1/100.CHứng minh A>65/132
đề bài bạn sai vì theo như quy luật thì :
A=\(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
\(\dfrac{1}{4}>\dfrac{1}{3.2}\)
\(\dfrac{1}{9}>\dfrac{1}{3.4}\)
\(\dfrac{1}{16}>\dfrac{1}{4.5}\)
.
.
.
\(\dfrac{1}{81}>\dfrac{1}{9.10}\)
\(\dfrac{1}{100}>\dfrac{1}{10.11}\)
A > \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
A > \(\dfrac{1}{2}+\dfrac{1}{11}\) =\(\dfrac{13}{22}\)
mà \(\dfrac{13}{22}\)>\(\dfrac{65}{132}\) ; A>\(\dfrac{13}{22}\)
Vậy A>\(\dfrac{65}{132}\)
Cho biêu thức: M = 1/4 + 1/9 + 1/16 + 1/25 +...+ 1/20242.
Chứng minh rằng: M<2/3
Cho A= 1/4 + 1/9 + 1/16 +...+ 1/81 + 1/100
Chứng minh A > 64/135
Cho A=1/4+1/9+1/16+...+1/18+1/100.CHứng minh A>65/132
Chứng minh rằng
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}
A=2/3+8/9+26/27+...+3n+1/3n , chứng minh A>n-1/2
F=4/3+7/32+10/33+...+3n+1/3n,chứng minh E<3/4
so sánh L=(1-1/4).(1-1/9).(1-1/16)....(1-1/20) với 1/21
chứng minh 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh 1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 < 1/3
Chứng minh: ( 2x + 3y ) Chia hết cho 17 ki và chỉ khi ( 9x + 5y) chia hết cho 17
1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3
Cách 1:21/64 < 1/3
Cách 2:21/64 < 0.(3)
Đúng
1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3
Cách 2:63/64 < 0.(3)
Ko đúng
Câu 3 mình ko biết
a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A
ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)
2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)
vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)
c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)Chứng minh:\(A>\frac{65}{132}\)
Ta có :
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{92}+\frac{1}{10^2}\)
Mà \(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(...\)
\(\frac{1}{9^2}>\frac{1}{9.10}\)
\(\frac{1}{10^2}>\frac{1}{10.11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow A-\frac{1}{4}>\frac{8}{33}\)
\(\Rightarrow A>\frac{8}{33}+\frac{1}{4}\)
\(\Rightarrow A>\frac{65}{132}\left(dpcm\right)\)