Những câu hỏi liên quan
TN
Xem chi tiết
H24
5 tháng 4 2021 lúc 0:00

Áp dụng bất đẳng thức Cosi ta có:

\(x+y\ge2\sqrt{xy}\)

\(\Rightarrow2\sqrt{S}\le12\Leftrightarrow\sqrt{S}\le6\Rightarrow S\le36\)

Dấu = xảy ra khi x=y=6

Bình luận (0)
NT
Xem chi tiết
QM
Xem chi tiết
DC
8 tháng 3 2016 lúc 12:50

Áp dụng bất đẳng thức\(\left(a+b\right)^2>=4ab\)

Ta có

2P=(2x+4y+6z)(6x+3y+2z) <= (8(x+y+z)-y)^2/4 <= ((8-y)^2)/4 <= (8^2)/4= 16

Dấu "=" xảy ra khi x=1/2; y=0;z=1/2

Do đó max P=8 khi x=1/2;y=0;z=1/2

Bình luận (0)
KS
Xem chi tiết
DP
Xem chi tiết
HN
Xem chi tiết
EC
2 tháng 9 2021 lúc 12:56

undefined

Bình luận (0)
NQ
Xem chi tiết
NM
1 tháng 4 2016 lúc 17:42

xy-3y+5=0

xy-3y=-5

y(x-3)=-5

Ta có y và x-3 thuộc Ư(5)

Bạn kẻ bảng rùi làm nốt nha

Bình luận (0)
NL
Xem chi tiết
TH
13 tháng 1 2021 lúc 12:32

Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:

\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)

\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)

\(B\le\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Vậy...

Bình luận (0)
N1
Xem chi tiết