Những câu hỏi liên quan
LG
Xem chi tiết
NT
27 tháng 6 2023 lúc 0:19

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: AD=DH

DH<DC

=>AD<DC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại D

=>D là trực tâm

=>BD vuông góc KC

Bình luận (0)
LA
Xem chi tiết
NT
15 tháng 4 2021 lúc 21:59

b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔABD=ΔHBD)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của KC

hay BD\(\perp\)KC(đpcm)

Bình luận (2)
NT
15 tháng 4 2021 lúc 21:56

a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)

Suy ra: AD=HD(hai cạnh tương ứng)

Bình luận (1)
NT
15 tháng 4 2021 lúc 21:59

c) Xét ΔDKC có DK=DC(cmt)

nên ΔDKC cân tại D(Định nghĩa tam giác cân)

Suy ra: \(\widehat{DKC}=\widehat{DCK}\)(hai góc ở đáy)

Bình luận (1)
H24
Xem chi tiết
TH
Xem chi tiết
LN
Xem chi tiết
TD
27 tháng 12 2017 lúc 17:38

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

Bình luận (0)
NP
Xem chi tiết
DN
Xem chi tiết
HA
13 tháng 6 2020 lúc 15:41

A)XÉT \(\Delta ABD\)\(\Delta HBD\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)

BD LÀ CẠNH CHUNG

=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)

GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH

XÉT \(\Delta ABI\)\(\Delta HBI\)

\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)

\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)

BI LÀ CẠNH CHUNG

=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)

\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)

MÀ HAI GÓC NÀY KỀ BÙ 

\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)

\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)

=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)

TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)

B)

b)  

Vì  \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )

=) AD = DH 

Xét\(\Delta\)DHC ( DHC = 90 ) có :

DC là cạnh huyền 

\(\Rightarrow\) DC là cạnh lớn nhất 

\(\Rightarrow DC>DH\)

mà DH = AD

\(\Rightarrow AD< DC\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
13 tháng 6 2020 lúc 15:31

a, Xét △ABD vuông tại A và △HBD vuông tại H

Có: BD là cạnh chung

       ABD = HBD (gt)

=> △ABD = △HBD (ch-gn)

=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH

và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH

=> BD là đường trung trực của AH

b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)

=> DC > AD

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 6 2020 lúc 15:50

a) Xét \(\Delta ABD\)và \(\Delta HBD\)có :

                  \(\widehat{BAD}=\widehat{AHD}\left(=90^o\right)\)

                \(BD\)chung

                  \(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta HBD\left(ch-gn\right)\)

\(\Rightarrow AB=BH\)( 2 cạnh tương ứng ) \(\Rightarrow\)B thuộc đường trung trực của AH \(\left(1\right)\)

và \(AD=HD\)( 2 cạnh tương ứng ) \(\Rightarrow\)D thuộc đường trung trực của AH \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\)BD là trung trực của AH

b) Xét \(\Delta DHC\)vuông tại H , ta có :

      \(DH< DC\left(cgv< ch\right)\)

mà \(AD=HD\left(cmt\right)\)

\(\Rightarrow AD< DC\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NT
Xem chi tiết