Cho tam giác ABC vuông tại A.Đường phân giác BD.Vẽ DH vuông góc với BC(H thuộc BC) chứng minh AD<DC
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
Cho tam giác ABC vuông tại A.Đường phân giác BD(D thuộc AC).Kẻ DH vuông góc với BC(H thuộc BC).Gọi K là giao điểm của BA và HD. a,C/M:AD=HD b,BD vuông góc KC c,Góc DKC= góc DCK d,2(AD+AK) > KC
b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔABD=ΔHBD)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của KC
hay BD\(\perp\)KC(đpcm)
a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)
Suy ra: AD=HD(hai cạnh tương ứng)
c) Xét ΔDKC có DK=DC(cmt)
nên ΔDKC cân tại D(Định nghĩa tam giác cân)
Suy ra: \(\widehat{DKC}=\widehat{DCK}\)(hai góc ở đáy)
Cho tam giác ABC vuông tại A,phân giác BD.Vẽ DK vuông góc BC(K thuộc BC).Gọi H là Giao điểm của AB và DK.Chứng minh trằng:
a)tam giác ABD=tam giác KBD
b)BD là đường trung trực của đoạn thẳng AK
c)DH=DC
d)AD<DC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC có AB=AC.Tia phân giác góc A cắt BC tại D
a)chứng minh tam giác ADB= tam giác ADC
b)chứng minh AD vuông góc BC
c)Kẻ DH vuông góc với AB (D thuộc AB), DK vuông góc với AC (K thuộc AC). Chứng minh DH=DK
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
Cho tam giác ABC vuông tại A.Kẻ BD là tia phân giác của góc ABC ( D thuộc AC).Từ D,kẻ DH vuông góc với BC(H thuộc BC).Tia BA cắt HD tại K.Kéo dài BD cắt KC tại E.
/chứng minh 2(AD + AH) > KC/
cho tam giác ABC vuông tại A , tia phân giác BD của góc ABC cắt AC tại D . Vẽ DH vuông góc với BC ( H thuộc BC ) .
a) Chứng minh rằng tam giác ABD = tam giác HBD . Từ đó suy ra BD là trung trực của AH
b) Chứng minh AD < DC
A)XÉT \(\Delta ABD\)VÀ\(\Delta HBD\)CÓ
\(\widehat{BAD}=\widehat{BHD}=90^o\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)
GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH
XÉT \(\Delta ABI\)VÀ\(\Delta HBI\)CÓ
\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)
mà\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)
TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)
B)
b)
Vì \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )
=) AD = DH
Xét\(\Delta\)DHC ( DHC = 90 ) có :
DC là cạnh huyền
\(\Rightarrow\) DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
mà DH = AD
\(\Rightarrow AD< DC\)
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: BD là cạnh chung
ABD = HBD (gt)
=> △ABD = △HBD (ch-gn)
=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH
và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH
=> BD là đường trung trực của AH
b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)
=> DC > AD
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(\widehat{BAD}=\widehat{AHD}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta HBD\left(ch-gn\right)\)
\(\Rightarrow AB=BH\)( 2 cạnh tương ứng ) \(\Rightarrow\)B thuộc đường trung trực của AH \(\left(1\right)\)
và \(AD=HD\)( 2 cạnh tương ứng ) \(\Rightarrow\)D thuộc đường trung trực của AH \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)BD là trung trực của AH
b) Xét \(\Delta DHC\)vuông tại H , ta có :
\(DH< DC\left(cgv< ch\right)\)
mà \(AD=HD\left(cmt\right)\)
\(\Rightarrow AD< DC\)
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt tại AC ở D.Từ D kẻ DH vuông góc với BC(H thuộc cạnh BC).
a. Chứng minh AD=DH
b.Cho góc ADH bằng 120 độ . Tính số đo các góc của tam giác ABC.
c.Chứng minh BD nhỏ hơn nửa chu vi tam giác ABC.
cho tam giác abc vuông tại A đường phân giác BD (D thuộc AC) kẻ DH vuông góc với BC (H thuộc BC) gọi K là giao điểm của BA và HD .Chứng minh AD = HD, BD vuông góc KC, góc DKC = góc DCK