Chứng minh rằng
1< a/a+b + b/b+c + c/c+a < 2 với a, b, c thuộc N*
1. Cho a,b,c thuộc N* thỏa mãn a^2+b^2+c^2 chia hết a+b+c. Chứng minh rằng tồn tại vô hạn n sao cho a^n+b^n+c^n chia hết a+b+c
2. Cho x,y,z thuộc R thỏa x^2+2y^2+5z^2=1. Tìm min,max M=xy+yz+xz
3.Cho a,b,c>0. Chứng minh (a^3+b^3+c^3)^2 < (a^2+b^2+c^2)^3
chứng minh rằng:p=a^a+b +b^b+c +a^c+a với a,b,c thuộc n sao và không phải là số tự nhiên
Bài 1 cho a, b,c,d thuộc N* thỏa mãn a^2+b^2=C^2+d^2
chứng minh : a+b+c+d là hợp số
mọi người giúp mình với!
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
cho a,b,c thuộc N sao chứng minh rằng
a/a+b + b/b+c + c/ a+c <2
Ta có:
\(\left\{\begin{matrix}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{a+c}>\frac{c}{a+b+c}\end{matrix}\right.\)
Cộng vế với vế ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) (1)
Lại có:
\(\left\{\begin{matrix}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{a+c}< \frac{c+b}{a+b+c}\end{matrix}\right.\)
Cộng vế với vế lại được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1) và (2)
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\) (Đpcm)
1. Chứng minh :3^n >= n^3 với mọi n thuộc N*
2. Cho a+b+c=1. Chứng minh: a^2 + b^2 + c^2 >=1/3
1/Cho a > 2 | b | . Chứng minh rằng : | a | < 2 | a - b |
2/Chứng minh rằng : | a - c | < hoặc = | a - b | + | b - c | với a, b, c thuộc Z
GIÚP MÌNH VỚI, MÌNH RẤT CẦN
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
cho a,b,c thuộc N sao chứng minh rằng
a/a+b + b/b+c + c/ a+c <2
Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\left(đpcm\right)\)
(3 điểm)
Cho tam giác $A B C$ vuông tại $A$. Vẽ đường tròn tâm $C$, bán kính $C A$. Từ điểm $B$ kẻ tiếp tuyến $B M$ với đường tròn $(C ; C A)$ ( $M$ là tiếp điểm, $M$ và $A$ nằm khác phía đối với đường thẳng $B C$ ).
1) Chứng minh bốn điểm $A$, $C$, $M$ và $B$ cùng thuộc một đường tròn.
2) Lấy điểm $N$ thuộc đoạn thẳng $A B$, ($N$ khác $A, N$ khác $B$). Lấy điểm $P$ thuộc tia đối của tia $M B$ sao cho $M P=A N$. Chứng minh tam giác $C P N$ là tam giác cân và đường thẳng $A M$ đi qua trung điểm của đoạn thẳng $N P$.
Với a,b,c thuộc N sao cho ab=bc=ca. Chứng minh rằng a=b=c