Những câu hỏi liên quan
PO
Xem chi tiết
TC
20 tháng 4 2022 lúc 21:19

undefined

Bình luận (1)
PO
Xem chi tiết
XO
5 tháng 4 2022 lúc 18:50

Với p = 2 => 2p + p2 = 8 (loại)

Với p = 3 => 23 + 32 = 17 (loại) 

Nhận thấy với p > 3 => p lẻ 

Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))

Khi đó P = 2p + p2 

= (2p + 1) + (p2 - 1)

Vì p lẻ => 2p + 1 = (2 + 1).(2p - 1 - 2p - 2 + ... + 1) \(⋮3\)(1) 

Với p = 3k + 1 => p2 - 1 = (p - 1)(p + 1) = (3k + 1 - 1)(3k + 1 + 1)

= 3k(3k + 2) \(⋮3\) (2) 

Từ (1) ; (2) => P \(⋮3\)(loại)

Với p = 3k + 2 => p2 - 1 = (p - 1)(p + 1) = (3k + 2 - 1)(3k + 2 + 1)

= 3(k + 1)(3k + 1) \(⋮\)3 (3) 

Từ (1) ; (3) => P \(⋮3\)

=> p = 3 là giá trị cần tìm 

Bình luận (1)
PO
Xem chi tiết
PO
Xem chi tiết
TH
13 tháng 2 2022 lúc 19:33

-Để mình suy nghĩ ngồi làm cho bạn nhé.

Bình luận (0)
TH
13 tháng 2 2022 lúc 19:47

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......

 

Bình luận (1)
PO
Xem chi tiết
PO
Xem chi tiết
XO
5 tháng 4 2022 lúc 18:20

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

Bình luận (1)
NL
5 tháng 4 2022 lúc 18:20

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu

Bình luận (1)
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
TH
13 tháng 2 2022 lúc 20:04

-Sao bạn đăng bài lớp 8 rồi đăng bài lớp 9 vậy?

Bình luận (0)