Những câu hỏi liên quan
MT
Xem chi tiết
MH
10 tháng 2 2022 lúc 5:18

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

Bình luận (0)
VN
Xem chi tiết
KS
24 tháng 6 2021 lúc 11:21

undefined

undefined

 

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
NT
22 tháng 5 2022 lúc 18:53

a: AC=8cm

Xét ΔBAC có AB<AC
nên \(\widehat{B}>\widehat{C}\)

b: Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCDB có

CA là đường trung tuyến

BM là đường trung tuyến

CA cắt BM tại G

Do đó: G là trọng tâm

=>AG=1/3AC=8/3(cm)

Bình luận (0)
NH
Xem chi tiết
NT
16 tháng 7 2021 lúc 23:49

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8(cm)

Bình luận (0)
NT
16 tháng 7 2021 lúc 23:50

b) Xét ΔABH vuông tại H và ΔEBH vuông tại H có 

BH chung

\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABH=ΔEBH(Cạnh góc vuông-góc nhọn kề)

Suy ra: BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Bình luận (0)
TB
Xem chi tiết
TT
Xem chi tiết
NT
8 tháng 4 2017 lúc 10:10

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

Bình luận (0)
LN
8 tháng 4 2017 lúc 11:05

uhuhuhu sợ bài này lắm rồi !

Bình luận (0)
TT
10 tháng 4 2017 lúc 20:36

Có câu c ko bn???

Bình luận (0)
37
Xem chi tiết
TT
8 tháng 3 2022 lúc 20:44

undefined

Bình luận (1)