chứng minh 274+324+819 chia hết cho 37
chứng minh rằng aaa luôn chia hết cho 37, chứng minh aaaa luôn chia hết cho 37
Ta có: aaa=a.111=a.3.37 chia hết cho 37
Ta có : aaa = 111 x a = 37 x 3 x a
=> aaa luôn chia hết cho 37
Còn cái kia chịu
aaaa luôn chia hết cho 37 là sai. VD:1111:37=30,02....
chứng minh nếu abc chia hết cho 37 thì cba chia hết cho 37 và bca chia hết cho 37
(abc) chia hết cho 37
=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
abc+cba +bca = 111(a+b+c) =37.3(a+b+c) chia hết cho 37
Nếu abc chia hết cho 37 => (cba+bca) chia hết cho 37 => cba chia hết cho 37 và bca chia hết cho 37
Chứng minh rằng 324^2017 -24 chia hết cho 100
cho xyz chia hết cho 37. Chứng minh rằng xyz chia hết cho 37
ta thấy : xyz = 100x +10y+z = 111xyz vì 111 chia hết cho 37 nên xyz chia hết 37
xyz chia hết cho 37 nên xyz chia hết cho 37
cho số xyz chia hết cho 37 .chứng minh yzx chia hết cho 37.
Cho số xyz chia hết cho 37. Chứng minh ỹz chia hết cho 37
Ta có:xyz=x.y.z=(x.z).y
yxz=y.x.z=y.(x.z)=(x.z).y
Vì xyz chia hết cho 37 nên yxz cũng chia hết cho 37
Cho abc+def chia hết cho 37.Chứng minh abcdef chia hết cho 37
abc + def chia hết cho 37 ( theo đề bài ) => 1000 ( abc + def ) cũng chia hết 37
ta có : 1000 abc + 1000def <=> 1000abc + def + 999def
hay : abcdef + 999def ( chia hết cho 37 )
mà 999def chia hết cho 37 => abcdef cũng chia hết cho 37 => dpcm
Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Ta lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Ta có: \(\overline{xyz}⋮37\)
\(\Leftrightarrow100x+10y+z⋮37\)
\(\Leftrightarrow111x-11x+10y+z⋮37\)
\(\Leftrightarrow11x-10y-z⋮37\)
Ta có: \(\overline{xyz}-\overline{yzx}=100x+10y+z-100y-10z-x=99x-90y-9z\)
\(\Leftrightarrow\overline{xyz}-\overline{yzx}=9\left(11x-10y-z\right)⋮37\)
\(\Leftrightarrow\overline{yzx}⋮37\)(đpcm)
Cho số abc chia hết cho 37. Chứng minh rằng số cab cũng chia hết cho 37
Tham khảo
Đáp án:
abc = 100a + 10b + c
=> 100a + 10b + c chia hết cho 37
=> 10 x ( 100a + 10b + c) chia hết cho 37
<=> 1000a + 100b + 10 c chia hết cho 37
Lại có 999 chia hết cho 37 ( 999 = 3.3.3.37)
=> 999a chia hết cho 37
=> 1000a + 100b + 10 c - 999a chia hết cho 37
<=> a + 100b + 10 c chia hết cho 37
=> 10 x ( a + 100b + 10c) chia hết cho 37
<=> 1000b + 100c + 10a chia hết cho 37
999b chia hết cho 37
=> 1000b + 100c + 10a - 999b chia hết cho 37
<=> 100c + 10a + b chia hết cho 37
<=> cab chia hết cho 37
Giải:
Ta có:
\(abc⋮37\)
\(\Rightarrow100a+10b+c⋮37\)
\(\Rightarrow10.\left(100a+10b+c\right)⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
Lại có: \(999⋮37\left(999=3^3.37\right)\)
\(\Rightarrow999a⋮37\)
\(\Rightarrow1000a+100b+10c-999a⋮37\)
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow10.\left(100b+10c+a\right)⋮37\)
\(\Rightarrow1000b+100c+10a⋮37\)
Lại có: \(999⋮37\left(999=3^3.37\right)\)
\(\Rightarrow999b⋮37\)
\(\Rightarrow1000b+100c+10a-999b⋮37\)
\(\Rightarrow100c+10a+b=cab⋮37\)
Vậy \(cab⋮37\)
Chúc bạn học tốt!
Cho abc+deg chia hết cho 37 .Chứng minh rằng abcdeg chia hết cho 37
k truoc tra loi sau $ 100 % ko bao gio da doi
k gium milk giai de hieu chinh xac milk hoc lop 7 con bn ko tin k di se biet
abcdeg=1000abc+deg=1001abc+deg-(abc-deg)
=>abcdeg chia hết cho 37
đúng đó