Tính giá trị biểu thức
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{9998.10000}\)
Gía trị biểu thức:
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\)
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
= \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
= \(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{29}{45}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>S=11.3 −12.4 +13.5 −14.6 +15.7 −16.8 +17.9 −18.10
(11.3 +13.5 +15.7 +17.9 )−12.4 −14.6 −16.8 −18.10
=12 (21.3 +23.5 +25.7 +27.9 )−(12.4 +14.6 +16.8 +18.10 )
=12 (21.3 +23.5 +25.7 +27.9 )−12 (22.4 +24.6 +26.8 +28.10 )
=12 (1−13 +13 −15 +15 −17 +17 −19 )−12 (12 −14 +14 −16 +16 −18 +18 −110 )
=12 (1−19 )−12 (12 −110 )
=12 (1−19 −12 +110 )
Tính giá trị của biểu thức:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)\left(1+\frac{1}{4.6}\right)...\left(1+\frac{1}{2013.2015}\right)\)
Hãy tính giá trị biểu thức
\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)
\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)
\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)
\(=\frac{2014\cdot2}{1\cdot2015}\)
\(=\frac{4028}{2015}\)
tính :
S= \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
\(2S=\frac{1}{2}-\frac{1}{10}\)
\(2S=\frac{2}{5}\)
\(S=\frac{2}{5}:2\)
\(S=\frac{1}{5}\)
S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(\Rightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow S=\frac{2}{5}:2=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)
TÍNH NHANH
A=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{28.30}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\)
\(A=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{28}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(A=\frac{1}{2}.\frac{7}{15}\)
\(A=\frac{7}{30}\)
\(2.A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\)
\(2.A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{28}-\frac{1}{30}\)
\(2.A=\frac{1}{2}-\frac{1}{30}\)
\(2.A=\frac{7}{15}\)
\(A=\frac{7}{15}:2=\frac{7}{30}\)
1) Tính giá trị biểu thức
A=\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
2) Tính nhanh:
\(\frac{-17}{2.4}-\frac{17}{4.6}-\frac{17}{6.8}-...-\frac{17}{100.102}\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
\(\frac{-17}{2.4}-\frac{17}{4.6}-\frac{17}{6.8}-...-\frac{17}{100.102}\)
\(=-\frac{17}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}.\frac{25}{51}=-\frac{25}{6}\)
Tính \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{38.40}\)
Giải chi tiết
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{38.40}\)
=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{38}-\frac{1}{40}\)
=\(\frac{1}{2}-\frac{1}{40}\)
=\(\frac{19}{40}\)
= 2 *[1/2 * 1/4 +1/4 *1/6 +1/6*1/8+...+1/38*1/40
=2*[1/2 - 1/40]
=2 * (-19/40)
= -380
=1/2 - 1/4 + 1/4 - 1/6+1/6-1/8+1/8-...-1/38+1/38-40
=1/2+0+0+0+...+0-1/40
=1/2-1/40
=20/40-1/40
=19/40
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
\(\frac{x}{2^2}\)+\(\frac{x}{2^3}\) +\(\frac{x}{2^4}\) =\(\frac{x}{3^2}\) +\(\frac{x}{3^3}\) +\(\frac{x}{3^4}\) là x =