cho a,b,c là số đo ba cạnh của 1 tam giác . cmr a^3+b^3+c^3+3abc ≥ a^2(b+c) + b^2(c+a) +c^2(a+b)
Cho a, b, c là số đo ba cạnh tam giác. CMR: \(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Bài 3: Cho a; b; c là ba cạnh của 1 tam giác .CMR:
(a+b+c)^2+(a-b+c)^2>4b^2
ta có a+c>b suy ra (a+b+c)^2>4b^2 suy ra (a+b+c)^2+(a-b+c)^2>(a+b+c)^2>4b^2
Cho ba cạnh của tam giác ABC là a,b,c Chứng minh tam giác ABC đều với các đẳng thức sau
a)(a+b+c)^2=3(ab+bc+ca)
b)a^3+b^3+c^3-3abc=0
c)(a+b)(b+c)(c+a)=8abc
1. Gọi a,b,c là số đo 3 cạnh của tam giác cho biết: a3+b3+c3-3abc=0. Hỏi tam giác này là tam giác gì?
\(a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(=>a+b+c\ne0\)
\(=>a^2+b^2+c^2-ab-bc-ac=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)
Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)
Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)
Vậy tam giác đã cho là tam giác đều
Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng: \(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\le a^3+b^3+c^3+3abc\) ?
Cho a;b;c là số đo 3 cạnh của 1 tam giác
CMR \(1< \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
Cho a;b;c là 3 cạnh của 1 tam giác có chu vi bằng 1
CMR\(\frac{2}{9}\le a^3+b^3+c^3+3abc< \frac{1}{4}\)
ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)
\(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)
nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)
vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)
tương tự với mấy cái kia nhân vaò và ta có
\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)
=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)
=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)
=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4
B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)
=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)
=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=> \(ab+bc+ca-abc\le\frac{7}{27}\)
=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)
Ta có a+b+c=1;a;b;c>0 nên
P=a3+b3+c3+3abc
=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc
=1-3abc-3∑ab(a+b)
=1-3abc-3∑ab(1-c)
=1-3(ab+bc+ca)+6abc
Vì a;b;c là 3 cạnh của một tam giác nên
b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1
Nên (2a-1)(2b-1)(2c-1)<0
<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0
=>4[ab+bc+ca-2abc]>1
=>P<1/4
Ta có:
(a+b-c)(b+c-a)(c+a-b)=
\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc
=>(1-2a)(1-2b)(1-2c)≤abc
=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)
Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)
trời mãi ms xong
cho a,b,c là đọ dài 3 cạnh của 1 tam giác chứng minh a2(b+c-a)+b2(a+c-b)+c2(a+b-c)<3abc