chứng tỏ rằng hai số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
chứng tỏ rằng : hai số tự nhiên lẻ liên tiếp là hai số nguyên tố cùng nhau
chứng tỏ rằng
a)2 số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b)2 số tự nhiên liên tiếp lẻ bất kì nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng tỏ rằng 2 số tự nhiên lẻ liên tiếp bất kì là 2 số nguyên tố cùng nhau.
Gọi 2 số tự nhiên lẻ là a và a+2, ƯC(a,a+2)=d
=>a chia hết cho d( vì a lẻ=>d lẻ)
a+2 chia hết cho d
=>a+2-a chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Vì d lẻ
=>d=1
=>ƯC(a,a+2)=1
=>a và a+2 là 2 số nguyên tố cùng nhau
=>ĐPCM
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp nguyên tố cùng nha.
b) Hai số tự nhiên liên tiếp lẻ nguyên tố cùng nhau
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b) Hai số tự nhiên lẻ liên tiếp bất kì nguyên tố cùng nhau
chứng minh rằng
a) hai số lẻ liên tiếp
b) 2N+5 VÀ 3n+7
Chứng tỏ rằng hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Tham khảo:
Câu hỏi của Võ thanh Hương - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của hoàng vũ - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của tiên nữ giáng trần - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Pham Quynh Trang - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Ngọc Nguyễn Minh - Toán lớp 6 - Học toán với OnlineMath
Nguyễn Công Tỉnh (Box Tiếng Anh):Rút kinh nghiệm lần sau chỉ cần đưa 1 link thôi bạn.Bài nào chả đúng :D =))
Bài giải
Gọi hai số tự nhiên đó là n + 1; n + 2
Gọi (n+1;n+2) = d
Ta có \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\).Do d = 1 nên n + 1; n + 2 nguyên tố cùng nhau (đpcm)