Những câu hỏi liên quan
BD
Xem chi tiết
NM
Xem chi tiết
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)
NL
Xem chi tiết
LC
11 tháng 10 2015 lúc 11:05

Gọi 2 số tự nhiên lẻ là a và a+2, ƯC(a,a+2)=d

=>a chia hết cho d( vì a lẻ=>d lẻ)

    a+2 chia hết cho d

=>a+2-a chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Vì d lẻ

=>d=1

=>ƯC(a,a+2)=1

=>a và a+2 là 2 số nguyên tố cùng nhau

=>ĐPCM

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Bình luận (0)
H24
25 tháng 12 2021 lúc 10:30

Thank you

 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 6 2017 lúc 13:15

Bình luận (0)
TL
31 tháng 10 2024 lúc 20:57

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
DV
26 tháng 11 2020 lúc 20:25

chứng minh rằng 

a) hai số lẻ liên tiếp 

b) 2N+5 VÀ 3n+7

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
NT
24 tháng 12 2018 lúc 18:53

Tham khảo:

Câu hỏi của Võ thanh Hương - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của hoàng vũ - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của tiên nữ giáng trần - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của Pham Quynh Trang - Toán lớp 6 - Học toán với OnlineMath

Câu hỏi của Ngọc Nguyễn Minh - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
H24
24 tháng 12 2018 lúc 18:58

Nguyễn Công Tỉnh (Box Tiếng Anh):Rút kinh nghiệm lần sau chỉ cần đưa 1 link thôi bạn.Bài nào chả đúng :D =))

                               Bài giải

Gọi hai số tự nhiên đó là n + 1; n + 2

Gọi (n+1;n+2) = d

Ta có \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\).Do d = 1 nên n + 1; n + 2 nguyên tố cùng nhau (đpcm)

Bình luận (0)