Những câu hỏi liên quan
NC
Xem chi tiết
H24
13 tháng 3 2019 lúc 12:39

3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*3^21+13*3^24+13*3^27=13*(3^21+3^24+3^27)chia hết cho 13

Giải nghĩa ^:mũ

                *:nhân

Bình luận (0)
SS
Xem chi tiết
MU
14 tháng 12 2015 lúc 20:40

s2 Lắc Lư s2 cko hỏi ôg lp mấy z? 

Bình luận (0)
ND
Xem chi tiết
NN
Xem chi tiết
AN
24 tháng 4 2017 lúc 18:33

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

Bình luận (0)
AN
24 tháng 4 2017 lúc 18:37

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

Bình luận (0)
NN
24 tháng 4 2017 lúc 19:08

cảm ơn bạn

Bình luận (0)
TA
Xem chi tiết
PH
6 tháng 12 2020 lúc 22:15

b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)

suy ra B = 0

c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)

\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
8 tháng 12 2020 lúc 17:26
Cảm ơn bn nhiều nha
Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
TU
11 tháng 4 2017 lúc 21:03

kb đc 0

Bình luận (0)
NH
11 tháng 4 2017 lúc 22:10

2 câu đầu tôi làm đc

Bình luận (0)
TD
24 tháng 12 2017 lúc 21:46

a) Ta có :

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)

\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)

vậy A > 1

b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)

\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)

Vậy B > \(\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
TF
9 tháng 7 2017 lúc 17:22

a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)

\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)

\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)

\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)

\(B=\frac{8}{303}\)

\(A.B=\frac{8}{303}.\frac{3}{200}\)

\(A.B=\frac{1}{2525}\)

b, A = 1/2 x 3/100

B = 2/3 x 4/101

Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2

MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)

Ta có : 1 - 3/100 = 97/100

1 - 4/101 = 97/101

Mà 97/101 < 97/100 => 4/101 > 3/100 (2)

Từ (1) và (2) => B > A

Bình luận (0)
DL
9 tháng 7 2017 lúc 17:34

a,

\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

b,

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)

Bình luận (0)
H24
Xem chi tiết
PQ
27 tháng 9 2019 lúc 12:11

a) \(\sqrt{3+\sqrt{5}}\)\(-\sqrt{3-\sqrt{5}}\)\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|}{\sqrt{2}}\)\(=\)\(\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}\)\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Bình luận (0)
IK
Xem chi tiết