Những câu hỏi liên quan
H24
Xem chi tiết
H24
3 tháng 4 2016 lúc 22:05

Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t

-Chứng minh biểu thức nhỏ hơn 2 .

Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z

A<x+t+y+z+z+x+t+y/x+y+t+z

A<2(x+t+y+z)/x+y+t+z

A<2

-Chứng minh biêu thức lớn hơn 1

A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z

A>x+y+t+z/z+x+y+t

A>1

Mà 1<A<2

Suy ra A không phải là STN

Có gì sai thì bạn sửa nhé

Bình luận (0)
ND
Xem chi tiết
NM
Xem chi tiết
FS
Xem chi tiết
H24
9 tháng 2 2020 lúc 11:15

ko vt lại đề 

(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019

=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019

=> (z-1)(xy-y-x+1)=2019

=> (z-1)(z-1)(y-1)=2019

vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1

nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}

(x-1)(y-1)(z-1)= 673.3.1=2019

=> x-1=673=>x=674

=>y-1=3=>y=4

=> z-1 =1=>z=2

Vậy x=674,y=4,z=2

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
LC
2 tháng 1 2016 lúc 11:55

Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)

=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)

=>M>1(1)

Lại có: 

Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)

Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)

=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)

=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)

=>M<2(2)

Từ (1) và (2)

=>1<M<2

=>M không là số tự nhiên

=>ĐPCM

Bình luận (0)
TD
Xem chi tiết