với x,y,z>0 CMR
(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2) >= (x+y+z)(1/x+1/y+1/z)
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)
mik cần c3 , ai làm giúp mik đc ko
Cho x,y,z>0 và x+y+z=1.CMR:\(\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{z^2}}\sqrt{z^2+\dfrac{1}{x^2}}>=\sqrt{82}\)
Cho x, y, z > 0 và x+y+z=1.
CMR : \(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
CMR: \(\frac{2\sqrt{x}}{x^3+y^3}+\frac{2\text{√}y}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
với X, Y, Z > 0
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
Cho x, y, z > 0 và \(x+y\le z\) . CMR :
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)
=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)
\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)
và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)
=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)
=>VT>=5+1/2+1/2+15/2=27/2
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.\)CMR biểu thức sau luôn âm với mọi x với x,y,z khác 0
\(A=\left(\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}\right)\left(\frac{x^2+z^2}{x^2z^2}-\frac{1}{y^2}\right)\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{x^2}\right)\)