Những câu hỏi liên quan
H24
Xem chi tiết
NK
Xem chi tiết
BT
Xem chi tiết
TT
Xem chi tiết
DL
Xem chi tiết
LT
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Bình luận (0)
VQ
Xem chi tiết
KK
3 tháng 4 2022 lúc 16:27

1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4x1/8=1/2
1/9+…+1/16>8x1/16=1/2
1/2+1/3+1/4+…+1/16>4x1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2

Bình luận (0)
DT
Xem chi tiết
VT
16 tháng 5 2016 lúc 10:39

hình như phân số cuối  phải là 1/324

nếu là 1/324 thì tớ giải nè:

A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324

= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2)                                                    <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)

= 1/4.(1+1-1/9)

= 1/4.17/9 = 17/36<18/36 = 1/2

=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2

Bình luận (0)
DT
16 tháng 5 2016 lúc 11:10

Cảm ơn nha Nobita Kun!!!

Bình luận (0)
BD
6 tháng 5 2017 lúc 8:05

A<1/1*2+1/3*4+........+1/17*18

A<1-1/2+1/3-1/4+.......+1/17-1/18

A<(1+1/3+.....+1/17)-(1/2+1/4+......+1/18)

A<(1+1/2+1/3+......+1/18)-(1/2+1/4+.....+1/18)-(1/2+1/4+.......+1/18)

A<1-1/18-(1/2+1/3+1/4+......+1/17)

A<17/18-1/2-(1/3+1/4+......+1/17)

A<4/9-(1/3+1/4+.......+1/17)<1/2=4/8

Vậy a<1/2(đpcm)--------------------------Mình làm hơi dài nhé----------------------------------

Bình luận (0)
KJ
Xem chi tiết
TH
11 tháng 2 2022 lúc 17:56

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\).

b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)

Bình luận (0)
NT
Xem chi tiết
DA
21 tháng 8 2016 lúc 22:02

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

Bình luận (1)
VK
Xem chi tiết