bài 1 chứng minh rằng:
A=1/2^2+1/3^2+1/4^2+...+1/100^2<2
làm đúng mình tích . mai mình nộp bài rồi
-1/3+1/3^2-1/3^3+1/3^4-.…...+1/3^100+1/3^101 Chứng minh rằng:A=1/2+1/3+1/4+..+1/16 không phải số tự nhiên(chứng minh 0
1.Cho A= 1/4^2+1/6^2+....+1/100^2
Chứng minh rằng:A<1/4
2.Cho B=1/2^2+1/4^2+1/6^2+....+1/100^2
Chứng minh rằng:B<1^2
Bài 1 :Ký hiệu n ! = 1.2.3.4.....(n-1).n
chứng minh rằng:A = 1/2!+2/3!+3/4!+.....+2015/2016! < 1
Cho A=1+1/2+1/3+...+1/2100 -1
Chứng minh rằng:A<100,A>50
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x
Chứng minh rằng:
A=1/2+1/3+1/4+...+1/63>2
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4x1/8=1/2
1/9+…+1/16>8x1/16=1/2
1/2+1/3+1/4+…+1/16>4x1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2
Chứng minh rằng:A=(1/4)+(1/16)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
A<1/1*2+1/3*4+........+1/17*18
A<1-1/2+1/3-1/4+.......+1/17-1/18
A<(1+1/3+.....+1/17)-(1/2+1/4+......+1/18)
A<(1+1/2+1/3+......+1/18)-(1/2+1/4+.....+1/18)-(1/2+1/4+.......+1/18)
A<1-1/18-(1/2+1/3+1/4+......+1/17)
A<17/18-1/2-(1/3+1/4+......+1/17)
A<4/9-(1/3+1/4+.......+1/17)<1/2=4/8
Vậy a<1/2(đpcm)--------------------------Mình làm hơi dài nhé----------------------------------
Chứng tỏ rằng:
a, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}< 1\)
b, \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\).
b. Có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\).
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}< 1\)
Mong mọi người giúp em với ạ!
a) Cho A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{3^{100}}\)Chứng minh A<\(\frac{3}{4}\).
b) Chứng minh rằng:A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}< \frac{1}{2}\)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
A=1/3^2+1/4^2+1/5^2+................+1/50^2
Chứng minh rằng:a)A>1/4 b)A<4/9