Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
PB
Xem chi tiết
GL
3 tháng 7 2019 lúc 16:03

\(x^2+x=y^4+y^3+y^2+y\)                                (1)

\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)

\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)

Ta có

\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\)            (2)

\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)

\(\Leftrightarrow y\ne-1\)(do y là số nguyên)

lúc đó (1) xảy ra khi 

\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\)                               (3)

tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)

\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)

\(\Leftrightarrow3y^2+4y=4y^2+2y\)

\(\Leftrightarrow y^2-2y=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)

Thay vào (3) tìm được y

Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)

Bình luận (0)
LH
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
AH
26 tháng 2 2022 lúc 18:35

Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)

$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:

$a^2+2(13-a)=25$

$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$

$\Leftrightarrow a=1$

$\Rightarrow b=12$ 

Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$

$\Leftrightarrow y^2+y-12=0$

$\Leftrightarrow (y-3)(y+4)=0$

$\Rightarrow y=3$ hoặc $y=-4$

Vậy $(x,y)=(4,3); (-3,-4)$

Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$

Bình luận (0)
KK
Xem chi tiết
LP
18 tháng 9 2017 lúc 19:10

Kushito Kamigaya tham khảo nhé:

x² + (x+y)² = (x+9)² 
<=> (x+y)² = (x+9)² - x² 
<=> (x+y)² = 9(2x+9) (*) 
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương 
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2 
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3 
đặt n = 2k+1 với k > 1, (k nguyên) 
có: 2x + 9 = (2k+1)² = 4k²+4k+1 
=> x = 2k²+2k-4, thay x vào (*) 

(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x 
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0 
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2 
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3 
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3 

*k = 2 => x = 8, y = 7 

*k = 3 => x = 20, y = 1

Bình luận (0)
LH
Xem chi tiết
H24
Xem chi tiết
AN
3 tháng 9 2016 lúc 6:43

Ta có x2 + xy + y2 = xy2

<=> (x + y)= xy(xy + 1) 

Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2

Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0

Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1) 

Bình luận (0)
VD
Xem chi tiết