H24

Giả sử ( \(x_0\),y\(_0\) ) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=13\\x^2+y^2=25\end{matrix}\right.\) Giá trị nhỏ nhất của tổng \(T=x_0+y_0\) là

AH
26 tháng 2 2022 lúc 18:35

Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)

$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:

$a^2+2(13-a)=25$

$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$

$\Leftrightarrow a=1$

$\Rightarrow b=12$ 

Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$

$\Leftrightarrow y^2+y-12=0$

$\Leftrightarrow (y-3)(y+4)=0$

$\Rightarrow y=3$ hoặc $y=-4$

Vậy $(x,y)=(4,3); (-3,-4)$

Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PH
Xem chi tiết
SL
Xem chi tiết