Cho A= 3n-5/n+4. Tìm n để A có giá trị là một số nguyên
Cho A=3n-5/n+4 . Tìm n là số nguyên để A có giá trị nguyên
Để \(A\) có giá trị nguyên thì \(\left(3n-5\right)⋮\left(n+4\right)\)
Ta có :
\(3n-5=3n+12-17=3\left(n+4\right)-17\) chia hết cho \(n+4\)\(\Rightarrow\)\(\left(-17\right)⋮\left(n+4\right)\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(-17\right)\)
Mà \(Ư\left(-17\right)=\left\{1;-1;17;-17\right\}\)
Suy ra :
\(n+4\) | \(1\) | \(-1\) | \(17\) | \(-17\) |
\(n\) | \(-3\) | \(-5\) | \(13\) | \(-21\) |
Vậy \(n\in\left\{-3;-5;13;-21\right\}\)
A= 3n-5/n+4 = 3(n+4)-17/n+4 (n ≠ -4)
Để A ∈ Z ⇔ 17 chia hết cho n+4 hay n+4 ∈ Ư(17)
⇒ n+4 ∈ {17; -17; 1; -1}
n ∈ {13; -21; -3; -5}
Vậy n ∈ {13; −21; −3; −5}
Tìm tất cả các giá trị nguyên của n để biểu thức A=3n+5/n+4 có giá trị là số nguyên
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó :A=3n+9/n-4.?
tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó.
A= 3n+9/n-4
B= 6n+5/2n-1
A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25}
tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó.
A= 3n+9/n-4
B= 6n+5/2n-1
Cho A=6n+4/3n+4 với n thuộc Z
a) Tìm số nguyên n để A có giá trị là 1 số nguyên
b) Tìm số nguyên n để A đạt giá trị nhỏ nhất
Tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính các giá trị đó.
a) A =n+1/n+4
b) B =3n−1/n+1
c) C =6n+5/2n−1
cứu mik vớiiiiiiiiii
a. ĐK : \(n\ne-4\)
\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)
\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n + 4 | 1 | -1 | 3 | -3 |
n | -3 | -5 | -1 | -7 |
b, ĐK : \(n\ne-1\)
\(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
c,ĐK : \(n\ne\frac{1}{2}\)
\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2(loại) | -1/2(loại) | 5/2(loại) | -3/2(loại) | 9/2(loại) | -7/2(loại) |
Tìm số nguyên n để phân số sau có giá trị là một số nguyên: A=3n+9/n-4
câu hỏi tương tự có bài này á Nguyễn Phương Quỳnh
tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó :
a) A = 3n + 9/n - 4 b) B = 6n + 5/2n -1
A/ \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{\left(n-4\right).3+21}{n-4}\)
ta có \(\frac{\left(n-4\right).3}{n-4}\)là số nguyên nên để A là một số nguyên thì (n--4) thuộc ước của 21
n-4 | 7 | 3 | -7 | -3 | 21 | 1 | -21 | -1 |
n | ? | ? | ? | ? | ? | ? | ? | ? |
B/\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{\left(2n-1\right).3+8}{2n-1}\)
giải như trên như bạn
Tìm số nguyên n để A=3n+2/2n-4 có giá trị là một số nguyên
\(A=\frac{3n+2}{2n-4}\) có giá trị nguyên
\(\Leftrightarrow\) \(3n+2\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(\left(2n-4\right)+n+4+2\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(\left(2n-4\right)+n+6\) \(⋮\) \(2n-4\)
\(2n-4\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(n+6\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(2\left(n+6\right)\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(2n+12\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(\left(2n-4\right)+16\) \(⋮\) \(2n-4\)
\(2n-4\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(16\) \(⋮\) \(2n-4\)
\(\Rightarrow\) \(2n-4\) \(\in\) \(Ư\left(16\right)\)
đến đâ dễ r`, bn tự lm tiếp đi!
3n+2/2n-4 là1 số nguyên nếu 3n+2chia hết cho 2n-4 suy ra2(3n+2)chia hết cho2n-4suy ra(6n+4)chia hết cho 2n-4
mặt khác:2n-4chia hết cho 2n-4suy ra3(2n-4)chia hết cho2n-4suy ra 6n-12chia hết cho 2n-4
theo tính chất chia hết của 1 tổng:(6n+4)-(6n-12)chia hết cho 2n-4 suy ra (-8) chia hết cho 2n-4
suy ra 2n-4 thuộc ư của -8. ư của -8 =1,-1,2,-2,4,-4,8,-8
2n-4 2 -2 4 -4 8 -8
n 3 1 4 0 6 -2
n=3,1,4,0,6,-2