Những câu hỏi liên quan
GB
Xem chi tiết
LQ
Xem chi tiết
PK
Xem chi tiết
DH
4 tháng 1 2017 lúc 19:35

Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )

= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )

= 5.6 + 53.6 + .... + 599.6

= 6 ( 5 + 53 + ... + 599 )

Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6 

Hay S chia hết cho 6 ( đpcm )

Bình luận (0)
ND
4 tháng 1 2017 lúc 19:43

Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)

A=5.(1+5)+53.(1+5)+599.(1+5)

A=5.6+53.6+...+599.6

A=6.(5+53+...+599) sẽ chia hết cho 6

mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!

Bình luận (0)
LT
4 tháng 1 2017 lúc 20:33

Gộp 2 số lại

Bình luận (0)
DB
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
BH
23 tháng 3 2017 lúc 14:43

Bạn tìm bài giải của Bùi Thế Hào, lúc sáng có giải rồi đấy

Bình luận (0)
NT
Xem chi tiết
TK
2 tháng 1 2022 lúc 15:58

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

Bình luận (0)
DL
Xem chi tiết
NH
Xem chi tiết
TH
9 tháng 9 2018 lúc 11:03

a) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{97}.31\)

\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

b) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)

\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)

\(=5+5.30+5^3.30+...+5^{97}.30\)

\(=5+30.\left(5+5^3+...+5^{97}\right)\)

\(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)

c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)

\(4S=5^{100}-5\)

\(\Rightarrow25^x-5=5^{100}-5\)

\(\Rightarrow25^x=5^{100}\)

\(\Rightarrow25^x=25^{50}\)

\(\Rightarrow x=50\)

Bình luận (0)