Những câu hỏi liên quan
HN
Xem chi tiết
ND
Xem chi tiết
TL
7 tháng 12 2017 lúc 22:02

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

Bình luận (0)
TT
Xem chi tiết
TL
7 tháng 12 2017 lúc 22:03

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

Bình luận (0)
SL
8 tháng 12 2017 lúc 5:21

Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất

Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\)    (m,n \(\in\) N*)

    a : 2003 dư 32 \(\Rightarrow a=2003n+32\)

\(\Rightarrow2001m+23=2003n+32\)

\(\Rightarrow2001m+23=2001n+2n+32\)

\(\Rightarrow2001m-2001n=2n+32-23\)

\(\Rightarrow2001\left(m-n\right)=2n+9\)

\(\Rightarrow2n+9⋮2001\)

Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất

Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)

Với \(n=996\) thì \(a=2003.996+32=1995020\)

Vậy số cần tìm là 1995020.

Bình luận (0)
HT
Xem chi tiết
VN
11 tháng 3 2017 lúc 20:34

Ta có:

        72004=74.501=A1

      =>A1:10=(A0+1):10=B0+1=B1=>72004:10 dư 1

        32003=34.500+3=34.500+33=C1+27=D8:10 dư 8

 
Bình luận (0)
NA
6 tháng 3 2017 lúc 21:52

Ta xét chữ số tận cùng của 72004 và 32003

ta có: 72004 = 74.501 = (.....1)501 = .........1 => tận cùng là 1 => chia 10 dư 1

ta có: 32003 = 34.500+3 = (......1)500 . 33 = (........1) . 27 = ......7 => tận cùng là 7 => chia 10 dư 7

Vậy: 72004 chia 10 dư 1 ; 32003 chia 10 dư 7

Bình luận (0)
NC
Xem chi tiết
PH
12 tháng 10 2016 lúc 16:48

20032004 khi chia cho 2001 số dư là 1591

Bình luận (0)
NT
Xem chi tiết
LM
Xem chi tiết
AH
12 tháng 8 2021 lúc 1:06

Lời giải:
Theo định lý Fermat thì:

$2002^{18}\equiv 1\pmod {19}$

$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$

$2002\equiv 7\pmod {19}$

$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$

Vậy $2002^{2003}$ chia $19$ dư $11$

Bình luận (0)
TT
Xem chi tiết
DV
Xem chi tiết