Những câu hỏi liên quan
NA
Xem chi tiết
AH
Xem chi tiết
ZZ
2 tháng 9 2019 lúc 20:30

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=15xyz\left(x^2+y^2+z^2\right)\)

Mặt khác:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=-z^5\)

\(\Rightarrow x^5+y^5+z^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=0\)

\(\Rightarrow x^5+y^5+z^5+\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=0\)

\(\Rightarrow x^5+y^5+z^5+\left(x+y\right)\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow x^5+y^5+z^5-5xyz\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(x^2+2xy+y^2\right)+x^2+y^2\right]=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Khi đó:\(6\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)=VT\)

\(\Rightarrowđpcm\)

Bình luận (0)
AH
2 tháng 9 2019 lúc 21:44

zZz Cool Kid zZz mình chưa hiểu lắm

Bn giải rõ ra dc ko

Bình luận (0)
NP
Xem chi tiết
KT
Xem chi tiết
VU
Xem chi tiết
CL
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Bình luận (0)
VU
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Bình luận (0)
H24
Xem chi tiết
H24
28 tháng 8 2021 lúc 9:53

x + y + z = 0

⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz

⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)

⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)

⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)

⇒2(x5+y5+z5)=5xyz(x2+y2+z2)

Bình luận (0)
H24
Xem chi tiết
NA
Xem chi tiết
LA
2 tháng 2 2017 lúc 19:34

Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)

Bình luận (0)
TT
Xem chi tiết
AH
1 tháng 2 2017 lúc 10:14

Lời giải:

Khai triển:

\(\text{VT}=5(x^5+y^5+z^5)+5\underbrace{[x^3(y^2+z^2)+y^3(x^2+z^2)+z^3(x^2+y^2)]}_{M}\)

Xét riêng $M$ kết hợp với điều kiện $x+y+z=0$ ta có

\(M=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(x+z)=-(x^2y^2z+y^2z^2x+z^2x^2y)\)

\(\Leftrightarrow M=-xyz(xy+yz+xz)=\frac{-1}{2}xyz[(x+y+z)^2-(x^2+y^2+z^2)]=\frac{1}{2}xyz(x^2+y^2+z^2)\)

Ta biết đến một hằng thức rất quen thuộc: Nếu $x+y+z=0$ thì \(x^3+y^3+z^3=3xyz\)

Cách chứng minh: \(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=0-3(-x)(-y)(-z)=3xyz\)

Do đó \(M=\frac{1}{6}(x^3+y^3+z^3)(x^2+y^2+z^2)=\frac{\text{VT}}{30}\)

\(\Rightarrow \text{VT}=5(x^5+y^5+z^5)+5M=5(x^5+y^5+z^5)+\frac{\text{VT}}{6}\)

\(\Rightarrow \text{VT}=6(x^5+y^5+z^5)\) (đpcm)

b) Theo phần a)

\(\left\{\begin{matrix} M=\frac{1}{2}xyz(x^2+y^2+z^2)\\ M=\frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}\end{matrix}\right.\Rightarrow \frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)

\(5(x^2+y^2+z^2)(x^3+y^3+z^3)=6(x^5+y^5+z^5)\Rightarrow \frac{6(x^5+y^5+z^5)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)

\(\Leftrightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\) (đpcm)

Bình luận (0)
LA
1 tháng 2 2017 lúc 22:23

b)Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)

Bình luận (1)