Tính nhanh: \(\frac{5}{3}+\frac{5}{6}+\frac{5}{10}+\frac{5}{15}+......+\frac{5}{4950}\)
A=\(\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+...+\frac{1993^3}{4950}\). So sánh A và B=814
Cho \(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh A với 814
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
Tính : Q=\(\frac{85}{25}+\frac{9}{10}-\frac{11}{5}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
Đặt A=\(\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
\(\frac{A}{2}=\frac{13}{42}-\frac{15}{56}+\frac{17}{72}-...+\frac{197}{9702}-\frac{199}{4950}\)
\(=\frac{6+7}{6.7}-\frac{7+8}{7.8}+\frac{8+9}{8.9}-...+\frac{98+99}{98.99}-\frac{99+100}{99.100}\)
\(=\frac{1}{7}+\frac{1}{6}-\frac{1}{8}-\frac{1}{7}+\frac{1}{9}+\frac{1}{8}-...+\frac{1}{99}+\frac{1}{98}-\frac{1}{100}+\frac{1}{99}\)
\(=\frac{1}{6}-\frac{1}{100}=\frac{47}{300}\)
\(\Rightarrow A=\frac{47}{300}.2=\frac{47}{150}\)
\(\Rightarrow Q=\frac{85}{25}+\frac{9}{10}-\frac{11}{5}+\frac{47}{150}=\frac{181}{75}\)
Vậy Q=\(\frac{181}{75}\).
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{6}+\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
-5/6 là -5/8
Tính nhanh
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{5}{8}-\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
\(=\frac{3.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{5.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{3}{5}\)
\(=\frac{6}{5}\)
Tính giá trị của biểu thức:
A = \(\frac{38}{5}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-....+\frac{197}{4851}-\frac{199}{4950}\)
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+...+\frac{9901}{9900}\)
\(B=\frac{2}{3}+\frac{5}{6}+\frac{9}{10}+\frac{14}{15}+...+\frac{4949}{4950}\)
\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=98+\frac{49}{100}=98\frac{49}{100}\)
Cho \(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh \(A\) với 814.
Sử dụng khá nhiều kiến thức hằng đẳng thức lớp 8, lớp 7 bó tay
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+...-\frac{197^3}{9702}+\frac{199^3}{9900}\)
\(\frac{A}{2}=\frac{3^3}{1.2}-\frac{5^3}{2.3}+\frac{7^3}{3.4}-\frac{9^3}{4.5}+...+\frac{199^3}{99.100}\)
\(\frac{A}{2}=3^3\left(1-\frac{1}{2}\right)-5^3\left(\frac{1}{2}-\frac{1}{3}\right)+7^3\left(\frac{1}{3}-\frac{1}{4}\right)-...+199^3\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=3^3-\frac{3^3+5^3}{2}+\frac{5^3+7^3}{3}-\frac{7^3+9^3}{4}+...+\frac{197^3+199^3}{99}-\frac{199^3}{100}\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}-\left(16.2^2+12\right)+\left(16.3^2+12\right)-\left(16.4^2+12\right)+...+\left(16.99^2+12\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(3^2-2^2+5^2-4^2+7^2-6^2+...+99^2-98^2\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(2+3+4+5+...+98+99\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(99.50-1\right)\)
\(\Rightarrow A=16.99.100-\frac{199^3}{50}+22\) (đến đây bấm máy ra kết quả so sánh cũng được)
\(\Rightarrow A=\frac{2^3.100^2\left(100-1\right)-199^3}{50}+22\)
\(A=\frac{200^3-199^3-2.200^2}{50}+22\)
\(A=\frac{200^2+200.199+199^2-2.200^2}{50}+22\)
\(A=\frac{199^2-200^2+200.199}{50}+22\)
\(A=\frac{-199-200+200.199}{50}+22=\frac{199^2}{50}+18\)
\(A< \frac{199.200}{50}+18=814\)
Vậy \(A< 814\)
Tính : \(Q=\frac{85}{25}+\frac{9}{10}-\frac{11}{5}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
BÀI THI HỌC SINH GIỎI
tính nhanh
a, \(\frac{7}{12}.\frac{6}{11}+\frac{7}{12}.\frac{5}{11}-2\frac{7}{12}\)
b,\(\frac{-5}{9}.\frac{-6}{13}+\frac{5}{-9}.\frac{-5}{13}-\frac{5}{9}\)
c,\(0,8.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-1\frac{2}{5}\)
d, \(75\%.\frac{6}{7}+5\%.\frac{6}{7}+\frac{7}{10}.1\frac{1}{7}\)
\(a,\frac{7}{12}\cdot\frac{6}{11}+\frac{7}{12}\cdot\frac{5}{11}+2\frac{7}{12}\)
\(=\frac{7}{12}\cdot\left(\frac{6}{11}+\frac{5}{11}\right)+2\frac{7}{12}\)
\(=\frac{7}{12}+\frac{31}{12}\)
\(=\frac{38}{12}=\frac{19}{6}\)
\(b,\frac{-5}{9}\cdot\frac{-6}{13}+\frac{5}{-9}\cdot\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{-5}{9}\cdot\frac{-6}{13}+\frac{-5}{9}\cdot\frac{-5}{13}+\frac{-5}{9}\cdot1\)
\(=\frac{-5}{9}\cdot\left(\frac{-6}{13}+\frac{-5}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\left(\frac{-11}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\frac{2}{13}\)
\(=\frac{-10}{117}\)
\(c,\)\(0,8\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(\frac{-15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
\(d,\)\(75\%\cdot\frac{6}{7}+5\%\cdot\frac{6}{7}+\frac{7}{10}\cdot1\frac{1}{7}\)
\(=\frac{3}{4}\cdot\frac{6}{7}+\frac{1}{20}\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\left(\frac{3}{4}+\frac{1}{20}\right)\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\frac{4}{5}\cdot\frac{6}{7}+\frac{4}{5}\cdot1\)
\(=\frac{4}{5}\cdot\left(\frac{6}{7}+1\right)\)
\(=\frac{4}{5}\cdot\frac{13}{7}\)
\(=\frac{52}{35}\)