So sánh
A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2021 và B = 2 mũ 2022
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
A = 2 + 2 2 + 2 3 + . . . + 2 2021 ⇔ 2 A = 2 2 + 2 3 + 2 4 + . . . + 2 2022 ⇔ 2 A − A = ( 2 2 + 2 3 + 2 4 + . . . + 2 2022 ) − ( 2 + 2 2 + 2 3 + . . . + 2 2021 ) ⇔ A = 2 2022 − 2 2 2022 − 2 < 2 2022 ⇒ A < B
A = 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 2021 + 2 mũ 2022 = bao nhiêu
\(A=1+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2022}+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{2022}+2^{2023}\right)-\left(1+2^2+2^3+...+2^{2021}+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
tính giá trị biểu thức sau
4A-3 mũ 2023
A=1-3+3 mũ 2 -3 mũ 3 +...........-3 mũ 2021+ 3 mũ 2022
cho mình câu trả lời chi tiết nhé
\(4A-3^{2023}\) hay \(4A=3^{2023}\) hả bạn
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
cho biểu thức C = 4 + 4 mũ 2 + 4 mũ 3 + .....+ 4 mũ 2021 + 4 mũ 2022
chức minh rằng C chia hết cho 5
\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{2021}.5\)
\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)
Vậy \(C⋮5\)
cho S= 5+5 mũ 2+ 5 mũ 3+......+5 mũ 2020+ 5 mũ 2021. Chứng tỏ rằng 4*S+5=5 mũ 2022
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
BÀI 7 tính nhanh các tổng sau:A=1=2 mũ 2 +2 mũ 3 +....+2 mũ 2021 + 2 mũ 2022 giúp mik với
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
27 . 65 + 27 . 35 + 300
3838 : [( 190 - 6 . 5 mũ 2 ) : 4 + 3 }
2022 - x = 2021
26 + 14 : ( x - 5 ) = 33
2 . 3 mũ x + 38 = 92
a)\(27.65+27.35+300=27.\left(65+35\right)+300\)
\(=27.100+300=2700+300=3000\)
b)\(3838:\left[\left(190-6.5^2\right):4+3\right]\)
\(=3838:\left[\left(190-6.25\right):4+3\right]\)
\(=3838:\left[\left(190-150\right):4+3\right]\)
\(=3838:\left[40:4+3\right]=3838:\left[10+3\right]\)
\(=3838:13=\dfrac{3838}{13}\)
c)\(2022-x=2021\)
\(x=2022-2021=1\)
d)\(26+14:\left(x-5\right)=33\)
\(14:\left(x-5\right)=33-26=7\)
\(x-5=14+7=2\)
\(x=2+5=7\)
e)đề hỏi làm j thế bạn
a = 4 + 4 mũ 2 + 4 mũ 3 + chấm chấm chấm + 4 mũ 2021 + 40 + 2022 . thu gọn biểu thức A . biểu thức A có chia hết cho 20 ? vì sao?
Ta có: ( Sửa đề )
\(A=4+4^2+4^3+...+4^{2021}+4^{2022}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)
\(A=20+4^2.\left(4+4^2\right)+...+4^{2020}.\left(4+4^2\right)\)
\(A=20+4^2.20+...+4^{2020}.20\)
\(A=20.\left(1+4^2+...+4^{2020}\right)\)
Vì \(20⋮20\) nên \(20.\left(1+4^2+...+4^{2020}\right)\)
Vậy \(A⋮20\)
\(#WendyDang\)
1 - 3 + 3 mũ 2 - 3 mũ 3 + 3 mũ 4 - ...... + 3 mũ 2022 - 3 mũ 2023 phần 4
Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$
$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$4A=\frac{1}{4}(1-3^{2024})$
$A=\frac{1}{16}(1-3^{2024})$