Những câu hỏi liên quan
DT
Xem chi tiết
LH
29 tháng 5 2021 lúc 9:30

Đề như này pk em?

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)

Áp dụng bđt Svac-xơ có:

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1

Bình luận (0)
H24
29 tháng 5 2021 lúc 9:39

Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)

Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi 

\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)

⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)

Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)

Bình luận (0)
PH
Xem chi tiết
NH
21 tháng 2 2017 lúc 21:09

Phần này chug: áp dụng Cauchy có: \(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\left(\frac{a+b}{2}\right)^2=\frac{1}{4}\)

a) \(A=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{1}{xy}\ge\frac{1}{\frac{1}{4}}=4\)

b) Áp dụng BĐT Schwart có: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

c) đề câu này là \(x+\frac{1}{x}\)hay \(\frac{x+1}{x}\)vậy em?

Bình luận (0)
PH
22 tháng 2 2017 lúc 13:00

\(x+\frac{1}{x}\)đó

Bình luận (0)
NG
Xem chi tiết
LF
2 tháng 4 2017 lúc 21:20

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu "=" khi \(\left\{{}\begin{matrix}x=y\\x+y=1\\x,y>0\end{matrix}\right.\)\(\Rightarrow x=y=\dfrac{1}{2}\)

Bình luận (4)
PT
Xem chi tiết
H24
14 tháng 4 2017 lúc 21:40

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

Bình luận (0)
PT
14 tháng 4 2017 lúc 21:46

a;b là hằng số dương mà bạn

Bình luận (0)
KN
10 tháng 2 2020 lúc 19:17

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

(Dấu "="\(\Leftrightarrow x=\frac{a}{a+b};y=\frac{b}{a+b}\))

Bình luận (0)
 Khách vãng lai đã xóa
MY
Xem chi tiết
LP
Xem chi tiết
XO
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Bình luận (0)
XO
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Bình luận (0)
NM
Xem chi tiết
NQ
11 tháng 3 2018 lúc 19:51

a,

Có : 1/x + 1/y >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

Vậy ..............

b, Áp dụng bđt sovac ta có : 

a^2/x + b^2/y >= (a+b)^2/x+y = (a+b)^2 >= 0

Dấu "=" xảy ra <=> x=y=1/2 và a=-b

Vậy ..............

Tk mk nha

Bình luận (0)
KK
26 tháng 11 2019 lúc 22:22

câu c áp dụng \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)bạn tự giải nhá.

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
PT
11 tháng 2 2018 lúc 10:25

Chứng minh Cái này :

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)

Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2

Bình luận (0)
DL
Xem chi tiết
TL
29 tháng 8 2018 lúc 21:43

1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm

Bình luận (0)