Những câu hỏi liên quan
DH
Xem chi tiết
HD
Xem chi tiết
VV
Xem chi tiết
LH
Xem chi tiết
LT
20 tháng 4 2016 lúc 17:17

Ta có: x là số nguyên và x chia hết cho 5

=> \(ax^3\)chia hết cho 5

\(bx^2\)chia hết cho 5

\(cx\)chia hết cho 5

\(d\)chia hết cho 5

Suy ra cả a,b,c,d đều chia hết cho 5

Bình luận (0)
LH
Xem chi tiết
H24
Xem chi tiết
NT
15 tháng 8 2017 lúc 21:36

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) suy ra:

\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\)

\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)

\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )

Vậy \(a,b,c,d⋮5\)

Bình luận (0)
BD
Xem chi tiết
DS
27 tháng 4 2018 lúc 20:11

ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5

=> 0+0+0+d chia hết cho 5 => d chia hết 5

ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5

=> a+b+c+d chia hết 5

Mà d chia hết 5 => a+b+c chia hết 5               (1)

ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5

=> -a+b-c+d chia hết 5

Mà d chia hết 5 => -a+b-c chia hết 5              (2)

Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5

=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5

Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5

=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5              (3)

ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5

=> 8a+4b+2c+d chia hết 5

Mà b,d chia hết 5 => 8a+2c chia hết 5                             (4)

Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5

=> c chia hết 5

Vậy...

Đúng thì k nha mina !!

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 1 2019 lúc 18:36

Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??

ĐK: \(x\inℤ\)

TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)

Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)

Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)

Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\)  (1)

Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\)  (2)

Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)

Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1

Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)

Từ đó suy ra đpcm

Bình luận (0)
NN
Xem chi tiết