Những câu hỏi liên quan
ND
Xem chi tiết
LK
1 tháng 7 2016 lúc 10:21

X/2=y/2=z/4=x+y+z/9=18/9=2

X=2.2=4

Y=2.3=6

Z=2.4=8

Bình luận (0)
CW
1 tháng 7 2016 lúc 10:32

a) x/2 = y/3 = z/4 va x + y + z =18.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2

=> x= 2*2 =4

y= 2* 3=6 

z=2*4= 8

Vậy x=4; y=6; z=8.

b) x/5 = y/-6 = z/7 va x + y - z =32.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4

=> x= -4 *5 = -20

y= -4* (-6)= 24

z= -4 * 7 = -28

Vậy x=-20 ; y= 24; x= -28.

c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.

x/5 = 2x/10

y/3 = 3y/9 

z/2 = 4z/8 

Áp dụng tính chất của dãy tỉ số bằng nhau:

2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2

=> x= 2*5 = 10

y= 2*3 =6

x= 2*2 =4

Vậy x= 10; y=6; z=4

d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.

x/2 =3x/6

y/3 = 2y/6

z/6 = 2z/12 

Áp dụng tính chất của dãy tỉ số bằng nhau:

3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2

=> x= 2*2 =4

y= 2*3 =6

z= 2* 6 =12

Vậy x=4; y=6; z=12

Bình luận (0)
TH
Xem chi tiết
NT
4 tháng 10 2017 lúc 10:49

x/2=y/3=z/4=(x-y+z)/(2-3+4)=10/3

x/2=10/3 => x=10/3.2=20/3

y/3=10/3=> y=10/3.3=10

z/4=10/3=> z=10/3.4=40/3

Bình luận (0)
HS
Xem chi tiết
NT
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

Bình luận (1)
74
25 tháng 4 2024 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)

Bình luận (0)
HH
Xem chi tiết
IY
15 tháng 2 2018 lúc 18:38

a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=0\)                           \(\Rightarrow|y-\frac{1}{5}|=0\)                                \(\Rightarrow|x+y+z|=0\)

\(\Rightarrow x+\frac{3}{4}=0\)                              \(\Rightarrow y-\frac{1}{5}=0\)                                      \(\Rightarrow x+y+z=0\)

\(x=\frac{-3}{4}\)                                                \(y=\frac{1}{5}\)                                                 thay x=-3/4; y=1/5 vào biểu thức trên

                                                                                                                                          ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)

                                                                                                                                                        \(z=0-\frac{-3}{4}-\frac{1}{5}\)

      VẬY X=-3/4; Y=1/5; Z=11/20

B) \(|3x-4|+\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=0\)                                    \(\Rightarrow\left|3y-5\right|=0\)

\(3x-4=0\)                                                    \(3y-5=0\)

\(3x=4\)                                                                    \(3y=5\)
\(x=\frac{4}{3}\)                                                                       \(y=\frac{5}{3}\)

VẬY X= 4/3; Y=5/3

C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)

MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG

\(\Rightarrow x;y;z\in\varnothing\)

d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=0\)                                \(\Rightarrow\left|3-y\right|=0\)

\(x+\frac{1}{5}=0\)                                                 \(3-y=0\)

\(x=\frac{-1}{5}\)                                                              \(y=3\)

VẬY X= -1/5; Y=3

CHÚC BN HỌC TỐT!!!!!!!

Bình luận (0)
PQ
15 tháng 2 2018 lúc 13:58

Ta có : 

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

Bình luận (0)
PQ
15 tháng 2 2018 lúc 14:03

\(b)\) Ta có : 

\(\left|3x-4\right|+\left|3y-5\right|=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-4=0\\3y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\3y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)

Vậy \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)

Bình luận (0)
LV
Xem chi tiết
NN
Xem chi tiết
DH
17 tháng 10 2021 lúc 0:18

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-2y+3z-6}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
DC
Xem chi tiết
TG
Xem chi tiết
BS
8 tháng 8 2017 lúc 12:13

a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

 \(\frac{x}{3}=\frac{y}{7}=\frac{z}{4}=\frac{x+y-z}{3+7-4}=\frac{12}{6}=6\)

+/ \(\frac{x}{3}=6\) => \(x=18\)

+/ \(\frac{y}{7}=6\) => \(y=42\)

+/ \(\frac{z}{4}=6\) => \(z=24\)

b)Ta có:  \(\frac{x}{3}=\frac{y}{7}=\frac{z}{y}\) (=) \(\frac{2x}{6}=\frac{3y}{21}=\frac{z}{y}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x}{6}=\frac{3y}{21}=\frac{z}{y}=\frac{2x+3y}{6+21}=\frac{54}{27}=2\)

+/ \(\frac{x}{3}=2\) => \(x=6\)

+/ \(\frac{y}{7}=2\) => \(y=14\)

+/ \(\frac{z}{y}=2\) => \(z=2y=2.14=28\)

T i c k nha ^^

Bình luận (0)
HA
Xem chi tiết
H24
24 tháng 9 2017 lúc 20:40

x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1) 
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2) 
Từ (1) và (2) suy ra: 
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2 
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau) 
Vậy: 
x = 2.8=16 
y = 2.12 = 24 
z = 2.15 = 30

Bình luận (0)
H24
24 tháng 9 2017 lúc 20:46

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)

\(\frac{x}{8}=2\Leftrightarrow x=16\)

\(\frac{y}{12}=2\Leftrightarrow y=24\)

\(\frac{z}{15}=2\Leftrightarrow z=30\)

Vậy x = 16 , y=24 và z = 30

Bình luận (0)
H24
24 tháng 9 2017 lúc 20:49

Giải :

Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{3x}{2}=y\\\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{4z}{5}=y\end{cases}}\Leftrightarrow\frac{3x}{2}=y=\frac{4z}{5}\Leftrightarrow\frac{12x}{8}=\frac{12y}{12}=\frac{12z}{15}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x}{8}=\frac{12y}{12}=\frac{12z}{15}=\frac{12x+12y-12z}{8+12-15}=\frac{12\left(x+y-z\right)}{5}=\frac{12\cdot10}{5}=24\)

Như vậy ta được \(\frac{3x}{2}=y=\frac{4z}{5}=24\Leftrightarrow\hept{\begin{cases}x=\frac{24\cdot2}{3}=16\\y=24\\z=\frac{24\cdot5}{4}=30\end{cases}}\)

Bình luận (0)