Cho tam giác ABC vuông tại A, biết AB=3cm,AC=4cm;đường cao AH(H thuộc cạnh BC), đường phân giác BD(D thuộc cạnh AC).Gọi I là giao điểm của AH và BD. a) C/m:Tam giác ABD ~ tam giác HBI b) C/m:Tam giác AID là tâm giác cân
Cho tam giác ABC vuông tại A biết AB =3cm AC=4cm tính AH HB
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A. Gọi G là trọng tâm tâm giác ABC Biết AB=3cm, AC=4cm. TÍNH Ag
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)
cho tam giác abc vuông tại a biết độ dài hai cạnh góc vuông là AB=3cm,AC=4cm tính chu vi của tam giác ABC
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
Cho tam giác ABC vuông tại A biết AB=3cm, AC=4cm, Gọi AH là đường cao tính S tam giác AHC
xét tam giác ABC vuông tại A . áp dụng Pytago
=>\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5cm\)
có \(AC^2=CH.BC\)(hệ thức lượng)
\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)
có tam giác AHC vuông tại H
=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)
=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)
Cho tam giác ABC vuông tại A có AB=4cm, AC =3cm. Giải tam giác vuông
Áp dụng PTG:
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
1,a,
ta có bc^2=ab^2+ac^2=4^2+3^2=25=>bc=5 cm
b,
xét tam giác abc và tam giác adc có:
ac:cạnh chung
^b=^d
ab=ad
=>tam giác abc=tam giác adc(cgc)
=>cd=cb
xét tam giác bae và tam giác dae có:
ae:cạnh chung
^bae=^dae
da=db
=>tam giác bae=tam giác dae(cgc)
=>be=de
xét tam giác bec và tam gíac dec có
be=de(cmt)
cd=cb(cmt)
ce chung
=>tam giác bec=tam giác dec(ccc)
cho tam giác ABC vuông tại A, phân giác AD. biết AB=3cm, AC=4cm. tính DC, DB
tam giác ABC vuông tại A=> BC^2=BA^2+AC^2 (Pitago)
=> BC^2=3^2+4^2
=> BC^2=25
=> BC= căn 25=5cn
tam giác ABC có AD là pg=> DB/DC=AB/AC
=> DB/DC=3/4=> DB/3=DC/4=DB+DC/3+4=BC/7=5/7
vậy DB=5/7.3=15/7cm,DC=5/7.4=20/7cm
Ta có: \(\frac{DB}{3}\)=\(\frac{DC}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{DB}{3}\)=\(\frac{DC}{4}\)=\(\frac{DB+DC}{3+4}\)=\(\frac{BC}{7}\)=\(\frac{5}{7}\)
=>DB=\(\frac{5}{7}\)x3=\(\frac{15}{7}\)
=>DC = BC-DB=\(\frac{20}{7}\)
Áp dụng định lí Pythagoras vào tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> BC = √( AB2 + AC2 ) = √( 32 + 42 ) = 5(cm)
Vì tam giác ABC có AD là phân giác nên theo tính chất đường phân giác trong tam giác ta có : \(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{BC}{AB+AC}=\frac{5}{3+4}=\frac{5}{7}\)
=> \(\hept{\begin{cases}\frac{DB}{AB}=\frac{5}{7}\\\frac{DC}{AC}=\frac{5}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}DB=\frac{5}{7}AB=\frac{15}{7}\left(cm\right)\\DC=\frac{5}{7}AC=\frac{25}{7}\left(cm\right)\end{cases}}\)
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Câu 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB = 3cm, AC = 4cm. Độ dài AM = ? *
A.5cm B.3cm C.4cm D.2,5cm
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>BC^2=3^2+4^2`
`<=>BC=5(cm)`
AM là đường trung tuyến của `\DeltaABC`
`=> AM = (BC)/2 = 5/2 (cm)`
Cho tam giác ABC vuông tại A. Gọi M là tung điểm của BC. Biết AB = 3cm, AC = 4cm. Đoạn AM = ?
A. 3cm B. 2,5cm C. 4cm D. 5cm