CMR với n thuộc N thì A=19.8n+17 là hợp số
CMR với n thuộc N thì A=19.8n+17 là hợp số
tại mọi người ca ngợi việt quá nên thử xem việt làm đc ko?
cmr : với n thuộc N* thì n^3+n+2 là hợp số
CMr với mọi n thuộc N* thì n^3+n+2 là hợp số
Xét n chẵn thì n^3+n+2 xẽ là số chẵn mà n thuộc vào N* nên n>0 =>n^3+n+2 >2 nên n^3+n+2 là hợp số.
Xét n lẻ thì n^3 là lẻ nên n^3+n là số chẵn => n^3+n+2 chẵn. Chứng minh như trên.
Có thể bạn ko cần phải chứng minh n^3+n là chẵn trong trường hợp trên nhưng chứng minh thì cũng ko thừa đâu.
Cmr: nếu b là số nguyên tố khác 3 thì A=3n+1+2009b là hợp số với n thuộc N, cảm ơn ạ.
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=
Với mọi n thuộc N* thì A=\(19.2^{3n}+17\)là số nguyên tố hay hợp số
\(A=19.2^{3n}+17=19.8^n+17\)
Với \(n=2k\):
\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)
mà \(A>3\)nên \(A\)là hợp số.
Với \(n=4k+1\):
\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)
mà \(A>13\)nên \(A\)là hợp số.
Với \(n=4k+3\):
\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)
mà \(A>5\)nên \(A\)là hợp số.
cmr : với n thuộc N* thì n^3+n+2 là hợp số
Câu 1: CMR nếu b là số nguyên tố khác 3 thì số :
A = 3n + 1 + 2009b^2 là hợp số với mọi n thuộc N.
CMR với mọi n thuộc Z , n>1 thì n^4+4 là hợp số
Giúp với
Cho S là tập hợp các số nguyên dương n, \(n=x^2+3y^2\)với x, y là các số nguyên. CMR:
1) Nếu a,b thuộc S thì ab thuộc S
2) Nếu n thuộc S; n chia hết cho 2 thì n chia hết cho 4 và n/4 thuộc S