Những câu hỏi liên quan
LS
Xem chi tiết
VC
10 tháng 9 2017 lúc 22:07

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

Bình luận (0)
H24
Xem chi tiết
LF
9 tháng 11 2016 lúc 17:37

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

Bình luận (0)
NV
Xem chi tiết
S6
16 tháng 10 2017 lúc 21:04

Bằng 0 và ko có giá trị của x thỏa mãn

Bình luận (0)
NV
16 tháng 10 2017 lúc 21:13

làm ơn ghi lời giải

Bình luận (0)
PS
Xem chi tiết
TM
30 tháng 6 2016 lúc 16:05

1.a) |x - 3/2| + |2,5 - x| = 0

=> |x - 3/2| = 0 và |2,5 - x| = 0

=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).

Vậy x rỗng.

Bình luận (0)
BM
Xem chi tiết
NP
23 tháng 5 2021 lúc 15:51

2450 nhé

Bình luận (0)
 Khách vãng lai đã xóa
NB
23 tháng 5 2021 lúc 15:55

còn cái nịtッ

Bình luận (0)
 Khách vãng lai đã xóa
BM
23 tháng 5 2021 lúc 15:57

bạn nói cách giải hộ mk với

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NN
29 tháng 6 2016 lúc 19:29

=2 hay la 4/2

Bình luận (0)
HN
Xem chi tiết
LN
28 tháng 5 2015 lúc 12:07

a)t có /x-2/ lớn hơn hoặc bằng 0

/x-4/lớn hơn hoặc bằng 0

suy ra /x-2/+/x-4/=A lớn hơn hoặc bằng 0 

vậy giá trị nhỏ nhất cua A là =0

khi đó ;/x-2/=0 và/x-4/=0

suy  ra x-2=0 vàx-4=0

vậy x=2 vàx=4

kết luận a có giá trị nhỏ nhất bằng 0 khi x=2 và x=4

b)tương tự

c)ta có /2x+4.5/ lớn hơn hoac =0

/x-2.7/lớn hơn hoac = 0 

mà /2x+4.5/+/x-2.7/=0

từ 3 dieu tren suy ra khi dó 

/2x+4.5/=0 và /x-2.7/=0

suy ra x=-2.25 và x=2.7

Bình luận (0)
NT
14 tháng 11 2016 lúc 11:07

x  chỉ là lớn hơn hoặc bằng 0

Bình luận (0)
NN
3 tháng 1 2017 lúc 18:29

a, x=2 hoặc x=4

b, x=2; 3 ; 4

c, ko cs giá trị nào

Bình luận (0)
LG
Xem chi tiết
VQ
25 tháng 8 2019 lúc 18:14

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{​​}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)

Bình luận (0)
HS
25 tháng 8 2019 lúc 20:33

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)

Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé

Bình luận (0)
PT
Xem chi tiết