Tính Gt biểu thức M=x^3+4x^2y+4xy^2+3y^3-1 biết x+3y=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x² + 3y² - 4xy - 2y + 4 = 0
Tính giá trị của biểu thức A = (x - 3)²⁰²³ + (y - 1)²⁰²⁴ + 2025
Bạn xem lại đề. Có vẻ phương trình đã cho không đúng.
tính giá trị biểu thức
A= 2014^2 - 4028 . 10140+ 1014^2
B= 9x^2 - 6x + 2013 với x= 200001/3
C= 2x + 2013y/ x - 2y biết x > 2y > 0 và x^2 + 3y^2 = 4xy
con A bn bấm nhầm đúng ko mik sửa lại nhé
A= 20142 - 4018. 1014 + 10142
= (2014 - 1014)2
= 10002
= 1000000
B= 9x2 - 6x + 2013
= 9x2 - 6x + 1 + 2012
= (3x - 1)2 + 2012
thay x = \(\dfrac{200001}{3}\)vào biểu thức B ta có:
B = (3.\(\dfrac{200001}{3}\)- 1)2 + 2012
= (200001 - 1)2 + 2012
= 2000002 + 2012
= 40000002012
mik chỉ làm đc đến đây thôi nhưng mong bn ủng hộ!
\(\dfrac{x^3-4x^2y+3y^2-4}{3x^3-3y^2-3y}\) tính giá trị biểu thức B khi x=\(\dfrac{1}{2}\) ; y=-1
Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:
\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)
\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)
\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)
\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)
Tính giá trị biểu thức:
\(x^4+4x^3y+6x^2y^2+4xy^3+y^4-x-y-10\) với x + y = 2
\(x^4+4x^3y+6x^2y^2+4xy^3+y^4-x-y-10\)
\(=\left(x^4+2x^3y+x^2y^2\right)+\left(2x^3y+4x^2y^2+2xy^3\right)+\left(x^2y^2+2xy^3+y^4\right)-\left(x+y\right)-10\)
\(=x^2\left(x^2+2xy+y^2\right)+2xy\left(x^2+2xy+y^2\right)+y^2\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)
\(=\left(x^2+2xy+y^2\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)
\(=\left(x+y\right)^2\left(x+y\right)^2-\left(x+y\right)-10\)
\(=\left(x+y\right)^4-\left(x+y\right)-10\)
\(=2^4-2-10\) \(=4\)
1/ tìm GTNN
4x^2+y^2-4x-2y+3
X^2+y^2+2*(x-2y)y+6
2 phân tich đa thức thành nhân tử
(x+y)^2-25(x+y)+24
2x^3y-2xy-4xy-2xy
y^2 +3xy+3y^2 (y#0)
(x^2+4x+8)^2-3x(x^2+4x+8) +x^2
x^3-y^3-3x+3y
x^4+6x^2+13x^2+12x+4
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
Tính giá trị biểu thức M=3x-4y/3y-4x biết
a) x=-2y
b)x/3=y/12
c)3x+y=0
\(a,x=-2y\)
Thay vào M ta được \(M=\frac{-6y-4y}{3y+8y}=-\frac{10y}{11y}=-\frac{10}{11}\)
b,\(\frac{x}{3}=\frac{y}{12}=k\Rightarrow x=3k;y=12k\)
Thay vào M ta được \(M=\frac{9k-24k}{36k-12k}=\frac{-15k}{24k}=-\frac{15}{24}\)
c,\(3x+y=0\Rightarrow y=-3x\)
Thay vào M ta được \(M=\frac{3x+12x}{-9x-4x}=\frac{15x}{-13x}=-\frac{15}{13}\)
Tính giá trị của biểu thức \(A=5xy^3+4x^2y^2-x^3y+2015\) biết x+y=0
có A=\(5xy^3\)+\(4x^2y^2\)-\(x^3y\)+2015=xy(\(5y^2+5xy-x^2\)) +2015=xy(\(5y^2+5xy-xy-x^2\)) +2015
=xy\(\left(\left(5y^2+5xy\right)-\left(xy+x^2\right)\right)\)=xy(5y(y+x)-x(x+y)) +2015 =xy(5y-x)(x+y)+2015=2015
dễ vậy thôi hc tốt nhé em!à nhớ k nhé thanks!
thay Y bang - X vao bieu thuc A thi ban co duoc phuong trinh:
A=-5xX^4+4xX^4+X^4+2015
A=0
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)