Những câu hỏi liên quan
LP
Xem chi tiết
MY
10 tháng 5 2022 lúc 20:08

\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)

\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)

\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)

Bình luận (0)
CD
Xem chi tiết
BL
Xem chi tiết
NT
4 tháng 10 2023 lúc 19:33

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2+6x+9}=2x+1\)

=>\(\left|x+3\right|=2x+1\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1\right)^2=\left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(x-2\right)\left(3x+4\right)=0\end{matrix}\right.\Leftrightarrow x=2\)

Bình luận (0)
H24
4 tháng 10 2023 lúc 19:34

\(\sqrt{x^2+6x+9}=2x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=2x-1\\ \Leftrightarrow\left|x+3\right|=2x-1\\ TH_1:x\ge-3\\ x+3=2x-1\Leftrightarrow-x=-4\Leftrightarrow x=4\left(tm\right)\\ TH_2:x< -3\\ -x-3=2x-1\Leftrightarrow-3x=2\Leftrightarrow x=-\dfrac{2}{3}\left(tm\right)\)

Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)

Bình luận (0)
CD
Xem chi tiết
NQ
9 tháng 1 2018 lúc 20:33

a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0

<=> (x^2-2)^2+(x+3)^2=0

<=> x^2-2=0 và x+3=0

=> pt vô nghiệm

b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0

<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0

<=> x^7-1=0

<=> x^7=1 = 1^7

=> x=1

Tk mk nha

Bình luận (0)
CD
9 tháng 1 2018 lúc 20:55

câu 1 sai r bn ơi

Bình luận (0)
NH
Xem chi tiết
TH
18 tháng 12 2020 lúc 19:36

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 

Bình luận (0)
VL
Xem chi tiết
MN
7 tháng 2 2020 lúc 18:16

1/ \(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x-1=0\)

hoặc   \(x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc   \(x=1\)

hoặc   \(x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)

2/ \(x^3-6x^2-x+30\)

\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)

\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-3=0\)

hoặc   \(x-5=0\)

\(\Leftrightarrow\)\(x=-2\)

hoặc   \(x=3\)

hoặc   \(x=5\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)

3/ \(x^3-9x^2+6x+16=0\)

\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)

\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc  \(x-8=0\)

hoặc  \(x-2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc   \(x=8\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
MN
7 tháng 2 2020 lúc 18:25

4/ Đề bài sai ! Sửa lại nhé :

 \(2x^3-x^2+5x+3=0\)

\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)

\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NT
19 tháng 1 2024 lúc 12:22

a: 5-3x=6x+7

=>-3x-6x=7-5

=>-9x=2

=>\(x=-\dfrac{2}{9}\)

b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)

=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)

=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)

=>3x-2+3x+14=48

=>6x+12=48

=>6x=36

=>\(x=\dfrac{36}{6}=6\)

c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)

=>(x-1)(5x+3-3x+8)=0

=>(x-1)(2x+11)=0

=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)

d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

=>\(\left(x-4\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
TN
Xem chi tiết
MN
2 tháng 3 2020 lúc 17:28

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa