Những câu hỏi liên quan
PA
Xem chi tiết
CD
Xem chi tiết
AV
Xem chi tiết
TK
5 tháng 8 2019 lúc 21:45

Đề bài là tìm MaxB 

Ta có \(a^2+b^2\ge2ab;b^2+1\ge2b\)

=> \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

=> \(B\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)=\frac{1}{2}\)

Do \(abc=1\)=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=1\)

MaxB=1/2  khi x=y=z=1

Bình luận (0)
HP
Xem chi tiết
VH
Xem chi tiết
AN
10 tháng 7 2017 lúc 13:54

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

Bình luận (0)
NT
10 tháng 7 2017 lúc 14:08

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

Bình luận (0)
TT
Xem chi tiết
H24
24 tháng 3 2020 lúc 20:52

đặt a-1=x ; b-1=y; c-1=z (x,y,z>0)

\(P=\frac{\left(x+1\right)^2}{x}+\frac{2\left(y+1\right)^2}{y}+\frac{3\left(z+1\right)^2}{z}\)

\(=\frac{x^2+2x+1}{x}+\frac{2y^2+4y+2}{y}+\frac{3z^2+6z+3}{z}\)

\(=x+2+\frac{1}{x}+2y+4+\frac{2}{y}+3z+6+\frac{3}{z}\)

\(=\left(x+\frac{1}{x}\right)+\left(2y+\frac{2}{y}\right)+\left(3z+\frac{3}{z}\right)+12\)

Với x,y,z>0 áp dụng bđt AM-GM ta có: \(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

\(2y+\frac{2}{y}\ge2\sqrt{2y\cdot\frac{2}{y}}=4;3z+\frac{3}{z}\ge2\sqrt{3z\cdot\frac{3}{z}}=6\)

Suy ra \(P\ge2+4+6+12=24\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{x}\\2y=\frac{2}{y}\\3z=\frac{3}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=2\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
VH
3 tháng 4 2020 lúc 8:38

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LL
13 tháng 8 2017 lúc 22:33

\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)

Bình luận (0)
BT
13 tháng 8 2017 lúc 22:36

ôi trá hình :VVV

Bình luận (0)
H24
14 tháng 8 2017 lúc 20:18

\(P=\frac{a^3}{\left(a+1\right).\left(b+1\right)}+\frac{b^3}{\left(b+1\right).\left(c+1\right)}+\frac{c^3}{\left(c+1\right).\left(a+1\right)}\)

Ko biết đúng hay không!

Mới lớp 6 , mà tôi nghĩ Lầy Văn Lội đúng đấy!

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 5 2020 lúc 21:20

Giúp ạ , mik cần gấp 

Bình luận (0)
 Khách vãng lai đã xóa
LH
2 tháng 5 2020 lúc 21:22

bận ròi

Bình luận (0)
 Khách vãng lai đã xóa
LH
2 tháng 5 2020 lúc 21:25

vô phần câu hỏi tương tự ý

lưu ý : nếu không được thì phải kết bạn để biết đáp án

Bình luận (0)
 Khách vãng lai đã xóa