Những câu hỏi liên quan
TT
Xem chi tiết
HH
Xem chi tiết
PC
26 tháng 3 2018 lúc 21:33

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

Bình luận (0)
DT
Xem chi tiết
VT
11 tháng 1 2018 lúc 11:52

Theo tôi nghĩ đề là như thế này :

Chứng minh :

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{9}{4a+4b+4c}\)

Làm :

Áp dụng BĐT Cachy dạng phân thức, ta có :

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\dfrac{9}{4a+4b+4c}\)

Dấu "=" xảy ra khi a = b = c .

=> ĐPCM

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 12 2018 lúc 9:53

Đáp án D

Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu  (S) và mặt phẳng (P) sao cho KM lớn nhất

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 16:05

Chọn đáp án D

Bình luận (0)
QM
Xem chi tiết
NC
27 tháng 3 2020 lúc 11:13

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
PQ
17 tháng 4 2020 lúc 8:51

tvbobnokb' n

iai

  ni;bv nn0

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
NT
24 tháng 12 2021 lúc 9:14

Chọn B

Bình luận (0)
MT
24 tháng 12 2021 lúc 9:15

 b nha

Bình luận (0)
NG
24 tháng 12 2021 lúc 9:17

B

Bình luận (0)
H24
Xem chi tiết
NL
17 tháng 8 2020 lúc 20:15

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
NL
17 tháng 8 2020 lúc 20:19

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
NL
17 tháng 8 2020 lúc 20:20

c) \(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{9}{2.3}=\frac{3}{2}\)

Dấu "=" xảy ra khi: x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
NT
23 tháng 12 2020 lúc 21:42

Ta có: a+b+c=0

nên a+b=-c

Ta có: \(a^2-b^2-c^2\)

\(=a^2-\left(b^2+c^2\right)\)

\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)

\(=a^2-\left(b+c\right)^2+2bc\)

\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)

\(=2bc\)

Ta có: \(b^2-c^2-a^2\)

\(=b^2-\left(c^2+a^2\right)\)

\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)

\(=b^2-\left(c+a\right)^2+2ca\)

\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)

\(=2ac\)

Ta có: \(c^2-a^2-b^2\)

\(=c^2-\left(a^2+b^2\right)\)

\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)

\(=c^2-\left(a+b\right)^2+2ab\)

\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)

\(=2ab\)

Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(=\dfrac{a^3+b^3+c^3}{2abc}\)

Ta có: \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)\)

Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được: 

\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)

\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)

Vậy: \(M=\dfrac{3}{2}\)

Bình luận (0)