Những câu hỏi liên quan
LN
Xem chi tiết
HN
Xem chi tiết
MH
Xem chi tiết
NT
13 tháng 4 2023 lúc 9:48

a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)

\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)

\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)

\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)

b: |x-2|=2

=>x-2=2 hoặc x-2=-2

=>x=0(nhận) hoặc x=4(nhận)

Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)

Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)

c: A>0

=>x/x-3>0

=>x>3 hoặc x<0

=>x>3

Bình luận (0)
ND
Xem chi tiết
NH
18 tháng 7 2018 lúc 11:29

\(a\ne0\)

\(f\left(1\right)=2\)

\(\Rightarrow a+b=2\)

\(f\left(3\right)=8\)

\(\Rightarrow3a+b=8\)

\(\Rightarrow2a+a+b=8\)

\(\Rightarrow2a=6\)

\(\Rightarrow a=3\)

\(\Leftrightarrow b=-1\)

Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)

Bình luận (0)
PT
18 tháng 7 2018 lúc 16:57

a≠0

ƒ (1)=2

⇒a+b=2

ƒ (3)=8

⇒3a+b=8

⇒2a+a+b=8

⇒2a=6

⇒a=3

⇔b=−1

Vậy đa thức đã cho là ƒ (x)=3x−1

Bình luận (0)
H24
Xem chi tiết
MN
22 tháng 3 2020 lúc 16:17

a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)

\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)

\(P=-\frac{2}{5}x^5y^7\)

Hệ số là  \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)

Bậc của đơn thức là 12

b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :

     \(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)

\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)

\(\Leftrightarrow-5+5=0\)

\(\Leftrightarrow0=0\)(TM)

Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)

Thay \(x=-1\)vào đơn thức M(x), ta được :

      \(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)

\(\Leftrightarrow2+7+5=0\)

\(\Leftrightarrow14=0\)(KTM)

Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
PM
10 tháng 7 2018 lúc 16:09

1 c nha các bạn

Bình luận (0)
SC
9 tháng 8 2018 lúc 16:29

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

Bình luận (0)
PT
Xem chi tiết
NK
28 tháng 12 2015 lúc 21:48

1,Ta có

3x+7y=24

<=>3x=24-7y

Vì x là số tự nhiên

=>\(24-7y\ge0\)

<=>\(7y\le24\)

<=>\(y<4\) mà y là số tự nhiên

=>\(y=\left\{0;1;2;3\right\}\)

=>\(x=\left\{....\right\}\)

b,\(x^2-4x+2y-xy+9=0\)

<=>\(\left(x^2-4x+4\right)-y\left(x-2\right)+5=0\)

<=>\(\left(x-2\right)^2-y\left(x-2\right)=-5\)

<=>\(\left(x-2\right)\left(x-2-y\right)=5\)

Đến đây giải theo pp pt nghiệm nguyên.

Nếu mình làm đúng thì tick nha bạn,cảm ơn.

tick tui làm tiếp cho nha.

Bình luận (0)
H24
28 tháng 12 2015 lúc 21:41

dễ tích đi mk làm cho

Bình luận (0)
VV
28 tháng 12 2015 lúc 21:43

1. Ta có:
3x + 7y = 24
=> 24 / 3 = x ( dư 7y )
Mà 24 / 3 = 8 ( dư 0 )
Vậy x = 8 ; y = 0
Hoặc x = 1 ; y = 3.

Bình luận (0)
RZ
Xem chi tiết
BH
Xem chi tiết