tính nhanh:
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.........+\frac{5}{100.103}\)
Tính:
\(A=\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+...+\frac{10301}{100.103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+............+\frac{5}{100.103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+................+\frac{5}{100.103}\)
\(\frac{1}{3}.\left(5-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+..............+\frac{5}{100}-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(5-\frac{5}{103}\right)\)
\(\frac{1}{3}.\left(\frac{510}{103}\right)=\frac{170}{103}\)
\(=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{....}{....}\)
xin lỗi mình ko có máy tính nên ko tính đc phép tính cuối
Bài 3 Tính giá trị biểu thức\(\left(1_{ },5\right).\frac{-2}{3}+\left(2,5-\frac{3}{4}\right):1\frac{3}{4}\)
B=\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
Thằng an mất dạy :)))
#Lê_Linh
\(\frac{5}{1.4}+\frac{5}{4.7}+.....+\frac{5}{100.103}\)
=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)
=5/3.(1/1-1/103)
=5/3.102/103
=170/103
=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)
=5/3.(1/1-1/103)
=5/3.102/103
=170/103
\(S=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=?\)
S = \(5-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+.......+\frac{5}{100}-\frac{5}{103}\)
S = \(5-\frac{5}{103}\)
S = \(\frac{510}{103}\)
Thực hiện phép tính
\(\frac{5}{1.3}-\frac{5}{3.5}+--\frac{5}{5.7}-...-\frac{5}{99.101}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
a cong tru loan nen ko hieu
b
A=5/1.4+5/4.7+..5/100.103
3/5.A=3/1.4+3/4.7+..+3/100.103
=1/1-1/4+1/4-1/7+...+1/100-1/103
=1-1/103=102/103
A=(5.102)/(3.103)=5.34/103
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{27.30}\)
Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)
\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\cdot\frac{29}{6}\)
\(A=\frac{29}{18}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)
Tính :
D= \(\frac{5}{1.4}\)+ \(\frac{5}{4.7}\)+ .....+\(\frac{5}{100.103}\)
=\(\frac{5}{3}\cdot\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\frac{102}{103}\)=\(\frac{170}{103}\)
Vậy D=\(\frac{170}{103}\)
Tính tổng:
B= \(\frac{5}{1.4}\)+ \(\frac{5}{4.7}\)+...+\(\frac{5}{100.103}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=5\left(1-\frac{1}{103}\right)\)
\(3B=5.\frac{102}{103}\)
\(3B=\frac{510}{103}\)
\(\Rightarrow B=\frac{170}{103}\)
Ta có:
B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}+.....+\frac{5}{100.103}\)
B=\(\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{100.103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{103}\right)\)
B=\(\frac{5}{3}.\frac{102}{103}\)
B=\(\frac{170}{103}\)
Vậy B=\(\frac{170}{103}\)
nhớ k