chứng tỏ rằng 1/4.7+1/7.10+1/10.13+...+1/37.40<1/3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng c= 1/4.7+1/ 7.10+ 1/10.13+...+1/37.40 < 1/3
Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)
\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)
\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)
...
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)
Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:
\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)
\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)
Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)
Chứng minh rằng:
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)
Ai làm nhanh và đúng mình tích cho
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)
=\(\dfrac{3}{3}\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)\)
=\(\dfrac{3}{40}< \dfrac{1}{3}\)
1) A= 1/3.4 + 1/4.5 +.....+ 1/39.40
2) B= 1/4.7 + 1/7.10 + .....+ 1/37.40
3) C= 2/4.7 + 2/7.10 +.......+ 2/37.40
Lưu ý: dấu chấm là dấu nhân( nếu bạn nào ko biết)
Mình cần gấp, nhờ các bạn. Phải đúng nhá
Thanks you
1)
A= \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{39}-\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{40}\)
=> A= 27/120
A = \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)
= \(\frac{1}{3}-\frac{1}{40}\)
= \(\frac{37}{120}\)
B = \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{37.40}\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{1}{3}.\frac{9}{40}=\frac{3}{40}\)
C = \(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)
= \(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\frac{9}{40}=\frac{3}{20}\)
1) A = \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
A = \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)
A = \(\frac{1}{3}-\frac{1}{40}\)
A = \(\frac{37}{120}\)
2) B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{1}{3}.\left(\frac{1}{37}-\frac{1}{40}\right)\)
B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
B = \(\frac{1}{3}.\frac{9}{40}\)
B = \(\frac{3}{40}\)
3) C = \(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)
C = \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{2}{3}.\left(\frac{1}{37}-\frac{1}{40}\right)\)
C = \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
C = \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{40}\right)\)
C = \(\frac{2}{3}.\frac{9}{40}\)
C = \(\frac{3}{20}\)
chứng tỏ rằng:1/1.4+1/4.7+1/7.10+...+1/67.70<1
c/m 1/4.7+1/7.10+1/10.13+...+1/604.607 < 1/12
Ta có:
Đặt \(A=\)\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{604.607}< \dfrac{1}{2}\)
\(=\dfrac{1}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{604}-\dfrac{1}{607}\right)< \dfrac{1}{2}\)
\(=\dfrac{1}{3}.\left(\dfrac{1}{4}-\dfrac{1}{607}\right)< \dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{1}{3}.\left(\dfrac{1}{4}-\dfrac{1}{607}\right)< \dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\)
............................... =) A < 1/2
A= \(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+\(\dfrac{1}{10.13}\)+....+\(\dfrac{1}{25.28}\)
\(A=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{6}{28}=\dfrac{2}{28}=\dfrac{1}{14}\)
`3A = 3/(4.7) + 3/(7.10) + .. + 3/(25.28)`
`3A = 1/4 - 1/7 + 1/7 - 1/10 +... + 1/25 - 1/28`
`3A = 3/14`
`A = 1/14.`
Chứng tỏ rằng :
1/ 1.4 + 1/4.7 +1/7.10+1/10.13 +.......+1/2014.2017 < 1/3
Các bạn giải nhanh giúp mik nhé ( mik còn 16 đề cơ ) . Thank you các bn !!!!
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
Ta có :
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)
\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)=\frac{1}{3}\cdot\frac{2016}{2017}\)
\(=\frac{672}{2017}< \frac{1}{3}\)
\(\RightarrowĐPCM\)
tim x , biet:\(\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{37.40}\right)-x=\frac{4}{5}\)
=>[(1/4-1/7+1/7-1/10+...+1/37-1/40):3]-x=4/5
=>[(1/4-1/40):3]-x=4/5
=>(9/40:3)-x=4/5
=>3/40-x=4/5
=>x=3/40-4/5
=>x=-29/40
K nhe bn. Chinh xac roi day
Bài 1 : tính
A = 4.7 + 7.10 + 10.13 + ...... + 205.208