Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
NT
22 tháng 5 2022 lúc 11:18

giúp tui điiiiikhocroi

Bình luận (0)
PL
22 tháng 5 2022 lúc 12:13

Hmm

Bình luận (0)
LC
Xem chi tiết
NQ
4 tháng 3 2018 lúc 21:53

cũng quá nhị công bích

Bình luận (0)
NQ
4 tháng 3 2018 lúc 21:56

ở đâu vậy  bao giờ học thứ mấy

Bình luận (0)
NQ
7 tháng 3 2018 lúc 19:51

sai đề bài rồi

Bình luận (0)
LN
Xem chi tiết
H24
30 tháng 1 2021 lúc 21:11

Gọi ƯCLN ( 12n+1,30n+2 ) = d

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left[\left(60n+5\right)-60n-4\right]\)\(⋮d\)

\(\Rightarrow\)1\(⋮d\)

\(\Rightarrow\)d = 1

Vậy phân số\(\frac{12n+1}{30n+2}\)tối giản với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
NT
31 tháng 1 2021 lúc 9:28

Đặt \(12n+1;30n+2=d\)

\(12n+1⋮d\Rightarrow60n+5⋮d\)

\(30n+2\Rightarrow60n+4⋮d\)

Suy ra : \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TG
16 tháng 3 2018 lúc 21:25

Gọi ƯCLN(12n+1,30n+2)=d.

=> 12n+1⁞d; 30n+2⁞d

=> 5(12n+1)⁞d; 2(30n+2)⁞d

   60n+5⁞d, 60n+4⁞d

=> (60n+5)-(60n+4)⁞d

    60n+5-60n-4⁞d

     1⁞d

=> d\(\inƯ\left(1\right)=1\)

Vậy ƯCLN(12n+1, 30n+2)=1.

Vậy với mọi n thì \(\frac{12n+1}{30n+2}\)là phân số tối giản.

Bình luận (0)
HH
16 tháng 3 2018 lúc 21:19

n= 1

k bt đúng hay k

=)))))))))

Bình luận (0)
H24
Xem chi tiết
NL
21 tháng 3 2021 lúc 9:45

1/n=3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
19 tháng 3 2021 lúc 21:28

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

Bình luận (0)
IT
19 tháng 3 2021 lúc 21:42

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy 

Bình luận (0)
TL
Xem chi tiết
MH
23 tháng 2 2016 lúc 8:59

1. Để A tối giản thì:

(n + 1, n + 3) = 1

Gọi d là ƯC nguyên tố của n + 1 và n + 3

=> n + 3 - n - 1 chia hết cho d

=> 2 chia hết cho d

Mà d nguyên tố

=> d = 2

Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2

Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2

=> n + 3 = 2k (k thuộc Z)

=> n = 2k - 3

Vậy n khác 2k - 3 thì A tối giản.

2. 12n + 1 / 30n + 2 tối giản

=> (12n + 1, 30n + 2) = 1

Gọi ƯCLN (12n + 1, 30n + 2) = d

=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d

=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy p/số trên tối giản.

Bình luận (0)
NA
Xem chi tiết
LH
13 tháng 2 2020 lúc 20:33

giả sử cả 12n+1 và 30n +2 đều chia hết cho d

\(\Rightarrow\)5(12n+1)\(⋮\)cho d và 2(30n+2) \(⋮\)cho d

\(\Rightarrow\)60n+5 \(⋮\)cho d và 60n+4 \(⋮\)cho d\(\Leftrightarrow\)60n+5-(60n+4)=60n+5-60n-4=1

\(\Rightarrow\)d=1

Vậy \(\frac{12n+1}{30n+2}\)đã tối giản với mọi n thuộc N

nhớ tích và chọn câu trả lời của mình nha~~~~~hocj toots

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
H24
29 tháng 3 2021 lúc 19:31

Ta chứng minh phân số này có tử và mẫu là  hai số nguyên tố cùng nhau .

 Gọi d  là ước chung của 12n+130n+2

Ta có :

5(12n+1)-2(30n+2)=1⋮d

 Vậy d=1  nên 12n+1 nguyên tố cùng nhau.

⇒ 12n+130n+2 là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
ZN
29 tháng 3 2021 lúc 19:34

\(A=\frac{12n+1}{30n+2}\)

Gọi \(d\inƯC\left(12n+1,30n+2\right)\)

Ta có :

\(5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n+4⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

Bình luận (0)
 Khách vãng lai đã xóa