CMR A = 11...1 (1995 chữ số 1) x 10...0 (1994 chữ số 0) là số chính phương.
chứng minh rằng : A= 11...1 * 10...05 +1 là số chính phương. biết rằng có 1995 chữ số 1 và có 1994 chữ số 0
CMR các số sau là số chính phương:
a)A= 44...488...89
(n+1 chữ số 4, n chữ số 8)
b)B=11...1.100...05+1
(1995 chữ số 1, 1994 chữ số 0)
Chứng minh C=11...1(1995 chữ số 1) . 1000...05(1994 chữ số 0) + 1 là số chính phương
\(C=\frac{999...9}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 9 và 1995 chữ số 0)
\(C=\frac{1000...0-1}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 0)
\(C=\frac{10^{1995}-1}{9}.\left(10^{1995}+5\right)+1\)
\(C=\frac{\left(10^{1995}\right)^2+4.10^{1995}-5}{9}+1=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}-\frac{5}{9}+1\)
\(C=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}+\left(\frac{2}{3}\right)^2=\left(\frac{10^{1995}}{3}+\frac{2}{3}\right)^2\) Là số chính phương
1)Cho x>0, y>0 x+y < hoặc =1
Tìm GTNN của M = xy + 9/xy
2) CMR số 11....1 ( có 1995 chữ số 1) x 100...05 +1 (1994 chữ số 0) là số chính phương
Câu 1 mình ấn nhầm
giúp mình câu 2 thôi. Thank you
C/M :
1111...11(có 1995 số 1) x 100...05(có 1994 số 0) là số chính phương
Chứng minh các số sau là số chính phương:
B=22499......99100......009 ( có n-2 chữ số 9 và n chữ số 0 )
C=444.......44888........889( có n+1 chữ số 4 và n chữ số 8 )
D=111.....1 x 100...05+1 ( có 1995 chữ số 1 và 1994 chữ số 0)
Chứng minh rằng: 1111...1 . 100...05 + 1
1995 chữ số1 1994 chữ số 0
Là số chính phương
Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n ∈ N)
Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3
Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3
Suy ra 111...11 . 1000...05 chia hết cho 3
Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1
Vậy N là số chính phương.
CM.P=11..1(1995 chữ số 1)-100..005(1994chu số 0) là số chính phương ?
Chứng minh rằng: 1111...1 . 100...05 + 1
1995 chữ số1 1994 chữ số 0
Là số chính phương
Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n $∈$∈ N)
Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3
Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3
Suy ra 111...11 . 1000...05 chia hết cho 3
Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1
Vậy N là số chính phương.