Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
EC
1 tháng 7 2019 lúc 22:02

a) 2x + 124 = 5y

Ta thấy : 5y luôn lẻ (\(\forall\)y) => 2x + 124 cũng là số lẽ

Mà 124 là số chẵn => 2x là số lẽ => x = 0

Với x = 0 => 20 + 124 = 5y

=> 1 + 124 = 5y

=> 125 = 5y

=> 5y = 53

=> y = 3

Vậy x = 0; y = 3 thõa mãn

b) Ta có: 10x + 168 = y2

=> 10x = y2 - 168

+) Nếu y là số lẻ => y2  là số lẻ

                               => y2 - 168 lẻ

                      => 10x lẻ => x = 0

Với x = 0 => 100 + 168 = y2

=> 1 + 168 = y2 => 169 = y2

                       => y2 = 132

                   => \(\orbr{\begin{cases}y=13\\y=-13\end{cases}}\)

+) Nếu y chẵn => y2 chẵn 

                   => y2 - 168 chẵn

              => 10x chẵn

Do 10x \(⋮\) 10 => y2 - 168 \(⋮\)10

   Mà y2 là số chính phương (ko có tận cùng là 8)

=> y2 - 168 ko \(⋮\) 10 

=> pt vô nghiệm

Vậy x = 0 và y = 13 hoặc x - 0 và y = -13 thõa mãn

Bình luận (0)
NC
1 tháng 7 2019 lúc 15:38

Xét đề bài là tìm x y là số tự nhiên

a) \(2^x+124=5^y\)

+) Với x=0

ta có:

 \(2^0+124=5^y\)

\(5^y=125=5^3\)

y=3

+) Với x>0 => y>3

Ta có: \(2^x+124⋮2\)

và \(5^y\) không chia hết cho 2

=> phương trình vô nghiệm

Vậy x=0; y=3

b) \(10^x+168=y^2\)

+) Với x=0 thay vào ta có:

\(y^2=169=13^2\Rightarrow y=13\)

+) Với x>0 => y>13

\(10^x+168=y^2\)

Ta có VT chia 10 dư 8

VP là số chính phương chia 10 không thể dư 8 được

=> phương trình vô nghiệm

Vậy x=0 và y=13 thỏa mãn

Bình luận (0)
CD
1 tháng 7 2019 lúc 18:56

2x + 124 = 5y

Ta có : 5y là số lẻ mà 124 và 2x là số chẵn => x ; y không thoả mãn

Bình luận (0)
HL
Xem chi tiết
NL
26 tháng 1 2022 lúc 8:01

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

Bình luận (0)
TQ
Xem chi tiết
LH
31 tháng 8 2016 lúc 15:11

a b A C B B

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 10 2018 lúc 2:14

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 1 2017 lúc 15:18

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 4 2019 lúc 17:56

Chọn đáp án D.

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
LP
29 tháng 10 2023 lúc 14:09

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

Bình luận (0)