Những câu hỏi liên quan
BT
Xem chi tiết
NK
Xem chi tiết
PL
3 tháng 4 2017 lúc 11:22
A = 2+7+(-6)/-3A= 3/-3A=-1Vậy số nguyên A cần tìm là -1
Bình luận (0)
SK
Xem chi tiết
LD
3 tháng 4 2017 lúc 20:54

Gọi d là ƯCLN của 2n - 3 ; n - 2 

Khi đó 2n - 3 chia hết cho d , n - 2 chia hết cho d

<=> 2n - 3 chia hết cho d , 2(n - 2) chia hết cho d

<=> 2n - 3 chia hết cho d , 2n - 4 chia hết cho d

<=> 2n - 3 - (2n - 4) chia hêt cho d 

=> 1 chia hết cho d

=> d = 1

Vậy p/s A tối gian 

Bình luận (0)
ZI
3 tháng 4 2017 lúc 20:51

Gọi ƯCLN(2n-3;n-2) là d(dEN).

=>2n-3 chia hết cho d và n-2 chia hết cho d.

=>2n-3 chia hết cho d và 2(n-2) chia hết cho d.

=>2n-3 chia hết cho d và 2n-4 chia hết chp d.

=>2n-3-(2n-4)=1 chia hết cho d.

Mà dEN;d lớn nhất =>d=1.

=>(2n-3;n-2)=1.

=>A tối giản với mọi nEZ;n khác 2.

k nha đúng đó

Bình luận (0)
NB
3 tháng 4 2017 lúc 20:54

để \(\frac{2n-3}{n-2}\)là PSTG thì phải cm \(2n-3\)và \(n-2\)là hai số nguyên tố cùng nhau

đặt UCLN(2n-3;n-2)=d

n-2:d=2.(n-2):d=2n-4:d

ta có((2n-3)-(2n-4)):d

=      (2n-3-2n+4):d

              1:d=>d=1

vậy \(\frac{2n-3}{n-2}\)là PSTG

xem nhớ tích

Bình luận (0)
DN
Xem chi tiết
SG
3 tháng 2 2017 lúc 22:30

a) A = n/3 + n2/2 + n3/6

A = 2n+3n2+n3/6

A = 2n+2n2+n2+n3/6

A = (n+1)(2n+n2)/6

A = n(n+1)(n+2)/6

Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6

Hay A thuộc Z (đpcm)

b) B = n4/24 + n3/4 + 11n2/24 + n/4

B = n4+6n3+11n2+6n/24

B = n(n3+6n2+11n+6)/24

B = n(n3+n2+5n2+5n+6n+6)/24

B = n(n+1)(n2+5n+6)/24

B = n(n+1)(n2+2n+3n+6)/24

B = n(n+1)(n+2)(n+3)/24

Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3

Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24

Hay B nguyên (đpcm)

Bình luận (0)
NA
Xem chi tiết
BC
Xem chi tiết
NT
18 tháng 4 2021 lúc 10:49

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
H24
1 tháng 5 2019 lúc 15:37

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

Bình luận (0)
H24
1 tháng 5 2019 lúc 15:40

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

Bình luận (0)
H24
1 tháng 5 2019 lúc 15:44

2) \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)

\(\Rightarrow\left(n+2\right)⋮\left(n-5\right)\)

\(\Rightarrow\left(n+2\right)-\left(n-5\right)⋮\left(n-5\right)\)

\(\Rightarrow7⋮n-5\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta xét bảng:

\(n-5\)\(-1\)\(1\)\(-7\)\(7\)
\(n\)\(4\)\(6\)\(-2\)\(12\)

Vậy\(n\in\left\{-2;4;6;12\right\}\)

Bình luận (0)
NL
Xem chi tiết
KT
9 tháng 2 2018 lúc 18:51

Ta có:     \(A=\frac{2n-1}{n+3}=2-\frac{7}{n+3}\)

Để  A  nguyên  thì   \(7\)\(⋮\)\(n+3\)

\(\Rightarrow\)\(n+3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)\(n\)\(=\left\{-10;-4;-2;4\right\}\)

Bình luận (0)
NU
9 tháng 2 2018 lúc 18:51

\(A=\frac{2n-1}{n+3}\) có giá trị nguyên

\(\Leftrightarrow2n-1⋮n+3\)

\(\Rightarrow\left(2n+6\right)-6-1⋮n+3\)

\(\Rightarrow2\left(n+3\right)-7⋮n+3\)

           có \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow-7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(-7\right)\)

        \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow n+3\in\left\{-1;-7;1;7\right\}\)

\(\Rightarrow n\in\left\{-4;-10;-2;4\right\}\)

Bình luận (0)
AO
9 tháng 2 2018 lúc 18:58

\(A=\frac{2n-1}{n+3}\)

\(A=\frac{2\left(n+3\right)-7}{n+3}\)

\(A=2-\frac{7}{n+3}\)

để \(A\in Z\)thì \(\frac{7}{n+3}\in Z\)

\(\Leftrightarrow n+3\inƯ\left(7\right)\)

\(\Leftrightarrow n+3\in\left\{\pm1;\pm7\right\}\)

\(n+3=-1\Leftrightarrow n=-4\)

\(n+3=1\Leftrightarrow n=-2\)

\(n+3=7\Leftrightarrow n=4\)

\(n+3=-7\Leftrightarrow n=-10\)

vậy \(x\in\left\{\pm4;-2;-10\right\}\)

Bình luận (0)
VA
Xem chi tiết