Ôn tập toán 8

DN

Cho \(n\in Z\). Chứng minh :

a) \(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}\in Z\)

b)\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\in Z\)

SG
3 tháng 2 2017 lúc 22:30

a) A = n/3 + n2/2 + n3/6

A = 2n+3n2+n3/6

A = 2n+2n2+n2+n3/6

A = (n+1)(2n+n2)/6

A = n(n+1)(n+2)/6

Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6

Hay A thuộc Z (đpcm)

b) B = n4/24 + n3/4 + 11n2/24 + n/4

B = n4+6n3+11n2+6n/24

B = n(n3+6n2+11n+6)/24

B = n(n3+n2+5n2+5n+6n+6)/24

B = n(n+1)(n2+5n+6)/24

B = n(n+1)(n2+2n+3n+6)/24

B = n(n+1)(n+2)(n+3)/24

Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3

Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24

Hay B nguyên (đpcm)

Bình luận (0)

Các câu hỏi tương tự
VQ
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
HK
Xem chi tiết