Cho A=\(\frac{2n+7}{n-3}+\frac{n-6}{n-3}\) Tìm \(n\in Z\)biết A là số nguyên
1`,
a,Chúng tỏ rằng p/s \(\frac{2n+5}{n+3}\left(n\in N\right)\)là p/s tối giản
b,Tìm \(n\in z\)để B=\(\frac{2n}{n+3}+\frac{5}{n+3}\)có giá trị là số nguyên
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Cho phân số C=\(\frac{2n+7}{n+2}\)\(\left(n\in Z,n\ne-3\right)\). Tìm các giá trị của n để D là số nguyên?
Để Dlaf số nguyên
-) 2n+7 chia hết n+3
n+3 chia hết n+3 vậy 2(n+3)chia hết n+3
vậy 2n +6 chia hết n+3
suy ra (2n+7)-(2n+6)chia hết n+3
suy ra 1 chia hết n+3
vậy n+3 = 1 hoặc -1
suy ra n= -2 hoặc -4 k đúbg mk nha
Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)
Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)
mà \(n\inℤ\Rightarrow n+3\inℤ\)
Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)
C = (2n+6+1) / (n+3)
C = 2 +1/n+3
Để C thì n+3 thuộc ước của 1
Suy ra n+3 = (1;-1)
Vậy n = (-2;-4)
Tìm n \(\in\)Z để
a, \(\frac{2n-3}{n+1}\)là số nguyên tố
b,\(\frac{n+8}{2n-5}\)là phân số tối giản
Bài 1: Tìm các số nguyên n để biểu thức sau nhận giá trị nguyên
a,\(B=\frac{n}{n-4}\)
b,\(C=\frac{2n+7}{n+3}\left(n\ne-3\right)\)
c,\(D=\frac{n^3-2n^2+3}{n-2}\)
d,\(E=\frac{3n}{n+1}\)
e,\(F=\frac{-7}{1-n}\)
Bài 2 Cho \(A=\frac{n+1}{\left(n^2+1\right)\left(n-7\right)}\)(n thuộc Z)
a, tìm điều kiện của n để A là phân số
b,với n bằng bao nhiêu thì phân số A không tồn tại?
c, Tính A, biết n=0,n=1,n=-2
Plz làm giúp mình nha <3 <3
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
b. \(C=\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=2+\frac{1}{n+3}\)
Để \(C\in Z\) thì \(\frac{1}{n+3}\in Z\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\) ( tm n khác -3 )
6,Tìm các số nguyên x , y , z biết :
\(\frac{4}{8}\)= \(\frac{x}{-10}\)=\(\frac{-7}{y}\)= \(\frac{Z}{-24}\)
7 ) Cho biểu thức A = \(\frac{3}{n-2}\)
a ) Tìm các số nguyên n để A là phân số .
b ) tìm các số nguyên n để A là số nguyên
Help me
Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 =x−10× −10 x . Để làm rõ, 48 4 8 48 8 4 có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2 =0, tức là 𝑛 ≠ 2 n =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 =3+ n−2 4 Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.
Cho A =\(\frac{4n+1}{2n+3}\)(n\(\in\)Z)
a. Tìm n để A là số nguyên
b.Tìm n để A lớn nhất
c. Tìm n để A bé nhất
Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3
<=> 4n + 1 chai hết cho 4n + 6
=> 4n + 6 - 5 chia hết 4n + 6
=>5 chia hết 4n + 6
=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}
Ta có bảng
4n + 6 | -5 | -1 | 1 | 5 |
4n | -11 | -7 | -5 | 11 |
n | -1 |
1. Tìm số nguyên n để phân số \(\frac{n^2-2n^2+3}{n-2}\)nhận giá trị nguyên
2. Tìm x \(\in\)Z biết
a) \(\frac{x}{4}=\frac{10}{x+3}\)
b) \(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
1. Ta có \(\frac{n^2-2n+3}{n-2}=\frac{n\left(n-2\right)+3}{n-2}=n+\frac{3}{n-2}\)
Để \(\frac{n^2-2n+3}{n-2}\in Z\) thì \(\frac{3}{n-2}\in Z\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
2. \(\frac{x}{4}=\frac{10}{x+3}\)
ĐK: \(x\ne-3\)
\(\frac{x}{4}=\frac{10}{x+3}\)
\(\Leftrightarrow\frac{x}{4}-\frac{10}{x+3}=0\)
\(\Leftrightarrow\frac{x^2+3x-40}{4\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+3x-40=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-8\end{cases}}\left(tmđk\right)\)
b) \(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
ĐK: \(x\ne-2\)
\(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
\(\Leftrightarrow\left(x+2\right)^3=-49.7\)
\(\Leftrightarrow\left(x+2\right)^3=-343\)
\(\Leftrightarrow x+2=-7\)
\(\Leftrightarrow x=-9\left(tmđk\right)\)
bn Huyền ơi ở câu 1 bn chép sai đầu bài của bạn Thảo rùi
Tìm \(n\in N\)
để A là số nguyên tố bé nhất, biết:
\(A=\frac{2n+3}{n+2}+\frac{3n+7}{n+2}-\frac{5n}{n+2}\)
giải cả bài nha
\(A=\frac{2n+3}{n+2}+\frac{3n+7}{n+2}-\frac{5n}{n+2}\)
\(A=\frac{2n+3+3n+7-5n}{n+2}\)
\(A=\frac{5n-5n+10}{n+2}\)
\(A=\frac{10}{n+2}\)
Vì A là số nguyên tố bé nhất.
\(A=\frac{10}{n+2}=2\)
\(10:\left(n+2\right)=2\)
\(n+2=10:2\)
\(n+2=5\)
\(n=5-2\)
Vậy \(n=3\)